MEMORANDUM

TO: Mr. Addison Rice

Anderson, Mulholland and Associates

DATE: July 11, 2016

FROM: R. Infante

FILE: 1606298-1606272

RE:

Data Validation Air samples

SDG: 1606298A; 1606298B; 1606298C; 1606298D; 1606298E; 1606298F; 1606298G;

1606272

SUMMARY

Full validation was performed on the data for several gas samples analyzed for volatile organic compounds (full suite) and methanol by method Compendium Method TO-15: Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS), January, 1999. Methane analyzed by ASTM method D-1946-modified. Naphthalene by method Compendium Method TO-17: Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling Onto Sorbent Tubes, January 1999. The samples were collected at the Bristol Myer Squib, Humacao, PR site on July 11-12, 2016 and submitted to Eurofins Air Toxics, Inc. of Folson, California that analyzed and reported the results under delivery groups (SDG) 1606298A; 1606298B; 1606298C; 1606298D; 1606298E; 1606298F; 1606298G; 1606272.

The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: Compendium Method TO-15. Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS), January, 1999; Validating Air Samples. Volatile Organic Analysis of Ambient Air in Canisters by Method TO-15, (SOP # HW-31. Revision #4. October, 2006. The QC criteria of methods TO-17 and ASTM method D-1946-modified. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

In general the data is valid as reported and may be used for decision making purposes. The data results are acceptable for use. Results for chloromethane and ethanol were qualified as estimated (J) or (UJ) in sample 1606298B-09A to 1606298B-15A and 1606298E-16A due to continuing calibration check outside method performance limit. Ethanol and acetone were qualified as estimated (J) in samples 1606298A-01A/-02A due RPD outside laboratory control limits.

SAMPLESThe samples included in the review are listed below

Client Sample ID	Lab. Sample ID	Collected Date	Matrix	Analysis
B7IA-1(061016) B7IA-1(061016) B7IA-1D(061016) B7IA-2(061016) B7IA-3(061016) B7IA-4(061016) B7IA-5(061016) B7IA-6(061016)	1606298A-01A 1606298A -01AA 1606298A -02A 1606298A -03A 1606298A -04A 1606298A -05A 1606298A -06A 1606298A -07A	06/11/16 06/11/16 06/11/16 06/11/16 06/11/16 06/11/16 06/11/16	Air Air Air Air Air Air Air	TO-15 (full suite)
B7AA(061016) B7SS-1(061216) B7SS-1D(061216) B7SS-2(061216) B7SS-3(061216) B7SS-4(061216) B7SS-5(061216) B7SS-6(061216)	1606298A -08A 1606298B-09A 1606298B -10A 1606298B -11A 1606298B -12A 1606298B -13A 1606298B -14A 1606298B -15A	06/11/16 06/12/16 06/12/16 06/12/16 06/12/16 06/12/16 06/12/16	Air Air Air Air Air Air Air	TO-15 (full suite)
B15SS-1(061216)	1606298E-16A	06/12/16	Air	TO-15 (full suite)
B7IA-1(061016) B7IA-1D(061016) B7IA-2(061016) B7IA-3(061016) B7IA-4(061016) B7IA-5(061016)	1606298A-01A 1606298A-02A 1606298A-03A 1606298A-04A 1606298A-05A 1606298A-06A	06/11/16 06/11/16 06/11/16 06/11/16 06/11/16	Air Air Air Air Air	TO-15 (methanol) TO-15 (methanol) TO-15 (methanol) TO-15 (methanol) TO-15 (methanol) TO-15 (methanol)
B7IA-6(061016) B7AA(061016) B7SS-1(061216)	1606298A-07A 1606298A-08A 1606298B-09A	06/11/16 06/11/16 06/12/16	Air Air Air	TO-15 (methanol) TO-15 (methanol) TO-15 (methanol)
B7SS-1D(061216) B7SS-2(061216) B7SS-3(061216) B7SS-4(061216) B7SS-5(061216) B7SS-6(061216)	1606298B-10A 1606298B-11A 1606298B-12A 1606298B-13A 1606298B-14A 1606298B-15A	06/12/16 06/12/16 06/12/16 06/12/16 06/12/16	Air Air Air Air Air Air	TO-15 (methanol) TO-15 (methanol) TO-15 (methanol) TO-15 (methanol) TO-15 (methanol) TO-15 (methanol)
B15SS-1(061216)	1606298E-16A	06/12/16	Air	TO-15 (methanol)
B7IA-1(061016) B7IA-1D(061016) B7IA-2(061016) B7IA-3(061016)	1606272-01A 1606272-02A 1606272-03A 1606272-04A	06/11/16 06/11/16 06/11/16 06/11/16	Air Air Air Air	TO-17 (naphthalene) TO-17 (naphthalene) TO-17 (naphthalene) TO-17 (naphthalene)
B7IA-4(061016) B7IA-5(061016) B7IA-6(061016) B7AA(061016) B7SS-1(061216)	1606272-05A 1606272-06A 1606272-07A 1606272-08A 1606272-09A	06/11/16 06/11/16 06/11/16 06/11/16 06/12/16	Air Air Air Air	TO-17 (naphthalene) TO-17 (naphthalene) TO-17 (naphthalene) TO-17 (naphthalene) TO-17 (naphthalene)
B7SS-1D(061216) B7SS-2(061216)	1606272-10A 1606272 -11A	06/12/16 06/12/16	Air Air	TO-17 (naphthalene) TO-17 (naphthalene)

Client Sample ID	Lab. Sample ID	Collected Date	Matrix	Analysis
B7SS-3(061216)	1606272-12A	06/12/16	Air	TO-17 (naphthalene)
B7SS-4(061216)	1606272-13A	06/12/16	Air	TO-17 (naphthalene)
B7SS-5(061216)	1606272-14A	06/12/16	Air	TO-17 (naphthalene)
B7SS-6(061216)	1606272-15A	06/12/16	Air	TO-17 (naphthalene)
B15SS-1(061216)	1606272-16A	06/12/16	Air	TO-17 (naphthalene)
B7IA-1(061016)	1606298D-01A	06/11/16	Air	ASTM D-1946 (methane)
B7IA-1D(061016)	1606298D-02A	06/11/16	Air	ASTM D-1946 (methane)
B7IA-2(061016)	1606298D-03A	06/11/16	Air	ASTM D-1946 (methane)
B7IA-3(061016)	1606298D-04A	06/11/16	Air	ASTM D-1946 (methane)
B7IA-4(061016)	1606298D-05A	06/11/16	Air	ASTM D-1946 (methane)
B7IA-5(061016)	1606298D-06A	06/11/16	Air	ASTM D-1946 (methane)
B7IA-6(061016)	1606298D-07A	06/11/16	Air	ASTM D-1946 (methane)
B7AA(061016)	1606298D-08A	06/11/16	Air	ASTM D-1946 (methane)
B7SS-1(061216)	1606298D-09A	06/12/16	Air	ASTM D-1946 (methane)
B7SS-1D(061216)	1606298D-10A	06/12/16	Air	ASTM D-1946 (methane)
B7SS-2(061216)	1606298D-11A	06/12/16	Air	ASTM D-1946 (methane)
B7SS-3(061216)	1606298D-12A	06/12/16	Air	ASTM D-1946 (methane)
B7SS-4(061216)	1606298D-13A	06/12/16	Air	ASTM D-1946 (methane)
B7SS-5(061216)	1606298D-14A	06/12/16	Air	ASTM D-1946 (methane)
B7SS-6(061216)	1606298D-15A	06/12/16	Air	ASTM D-1946 (methane)
B15SS-1(061216)	1606298G-16A	06/12/16	Air	ASTM D-1946 (methane)

REVIEW ELEMENTS

Sample data were reviewed for the following parameters, where applicable to the method

- o Agreement of analysis conducted with chain of custody (COC) form
- o Holding time and sample preservation
- o Gas chromatography/mass spectrometry (GC/MS) tunes
- o Initial and continuing calibrations
- o Method blanks/trip blanks/field blank
- o Canister cleaning certification criteria
- o Surrogate spike recovery
- o Internal standard performance and retention times
- o Field duplicate results
- o Laboratory control sample/laboratory control sample duplicate (LCS/LCSD) results
- o Quantitation limits and sample results

DISCUSSION

Agreement of Analysis Conducted with COC Request

Sample reports corresponded to the analytical request designated on the chain-of-custody form.

The Chain of Custody (COC) information for sample B7IA-1D(061016) did not match the entry on the sample tag with regard to sample identification. The information on the COC was used to process and report the sample.

Holding Times and Sample Preservation

Sample preservation was acceptable. Samples received in good conditions.

Samples analyzed within method recommended holding time.

GC/MS Tunes

The frequency and abundance of bromofluorobenzene (BFB) tunes were within the QC acceptance criteria. All samples were analyzed within the tuning criteria associated with the method.

Initial and Continuing Calibrations

<u>VOCs – (Method TO-15-full suite)</u>

Initial calibration meets method performance criteria. Ongoing accuracy of the instrument was determined by the analysis of a continuing calibration standard, continuing calibration meet the method performance criteria except for the following analytes:

DATE	LAB FILE ID#	CRITERIA OUT RFs, %RSD, <u>%D</u> , r	COMPOUND	SAMPLES AFFECTED	
Initial and continuing calibration met the method performance criteria except the cases described in this document.					
MSD-17					
06/16/16	1606298E-18A	31 %	Chloromethane	1606298B-09A to -15A;	
		40 %	Ehanol	1606298E-16A	

Results qualified estimated (J) or (UJ) in affected samples.

VOCs - (Method TO-15-methanol)

A one point initial calibration meets method performance criteria. Ongoing accuracy of the instrument was determined by the analysis of a continuing calibration standard, continuing calibration meet the method performance criteria.

<u>VOCs - (Method TO-17-naphthalene)</u>

Initial calibration meets method performance criteria. Ongoing accuracy of the instrument was determined by the analysis of a continuing calibration standard, continuing calibration meet the method performance criteria.

<u>VOCs - (Method ASTM D-1946-modified - methane)</u>

Initial calibration meets method performance criteria. Ongoing accuracy of the instrument was determined by the analysis of a continuing calibration standard, continuing calibration meet the method performance criteria

Method Blank/Trip Blank/Field Blank

Several VOCs TO-15 (full suite) analytes were detected in the method blanks analyzed below the reporting limit/action level. Laboratory qualified the results as estimated (J) in the method blanks. No further qualification made.

No sample analytes were detected in methods blanks analyzed for naphthalene, methanol and methane.

Summa canister met cleaning certification criteria.

No trip/field blank analyzed with this data package.

Surrogate Spike Recovery

The surrogate recoveries as per method TO-15, TO-17 and ASTM D-1946 were within the laboratory QC acceptance limits in all samples analyzed.

Internal Standard Performance

VOCs - TO-15 and TO-17

Samples were spiked with the method specified internal standard. Internal standard are performance and retention times met the QC acceptance criteria in all sample analyses and calibration standards.

Laboratory/Field Duplicate Results

Laboratory and field duplicates were analyzed as part of this data set. Target analytes meet the RPD performance criteria of +25% for analytes $5\times SQL$ except for the following for the TO-15 (full suite) analytes:

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
1606298A-01A/-02A		-	-		
Ethanol	0.80	8.0	5.8	32 %	Qualify results (J) in
Acetone	0.80	14	6.2	77 %	sample and duplicate

Laboratory/field blanks RPD for TO-15 (methanol); TO-17 (naphthalene); and ASTM D-1946 (methane) were within laboratory control limits.

LCS/LCSD Results

LCS/LCSD (blank spike) analyzed by the laboratory associated with this data package; % recoveries and RPD within laboratory and generally acceptable control limits except for the following analytes:

LCS ID	COMPOUND	% R	QC LIMIT
1606298A-11A/11AA	Bromomethane	133/132_%	70 - 130

LCS ID	COMPOUND	% R	QC LIMIT
	AChloromomethane	65/69_%	70130
1606298A-18A/18A	A1,3-butadiene	69_%	70130
	Ehanol	63/62_%	70130
	Acetone	69_%	70130
	Carbon_disulfide	66/68_%	70130
	Tetrahydrofuran	69_%	70130

Bromomethane not detected in the sample batch, not-detected in sample, non-detects are accepted. For analytes detected below the laboratory control limits, no action taken, % recoveries were within generally acceptable control limits.

Quantitation Limits and Sample Results

Dilutions were not performed on TO-15 samples (see worksheet).

· ESIMUO

Calculations were spot checked.

Certification

Rafael Infante

Chemist License 1888

The samples reported on SDG: 1606298A; 1606298B; 1606298C; 1606298D; 1606298E; 1606298F; 1606298G; 1606272 and described in the sample table were analyzed following standard procedures accepted by regulatory agencies. The quality control requirements met the methods criteria except in the occasions described in this document. The results are valid some of the results were qualified.

Client Sample ID: B7IA-1(061016) Lab ID#: 1606298A-01A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	20061514 1.61		of Collection: 6/1 of Analysis: 6/15	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	0.16	0.48	0.80	2.4
Freon 114	0.16	Not Detected	1.1	Not Detected
Chloromethane	0.80	1.0	1.7	2.2
Vinyl Chloride	0.16	Not Detected	0.41	Not Detected
1,3-Butadiene	0.16	Not Detected	0.36	Not Detected
Bromomethane	0.80	Not Detected	3.1	Not Detected
Chloroethane	0.80	Not Detected	2.1	Not Detected
Freon 11	0.16	7.8	0.90	44
Ethanol	0.80	8.0	1.5	15
Freon 113	0.16	0.064 J	1.2	0.49 J
1,1-Dichloroethene	0.16	Not Detected	0.64	Not Detected
Acetone	0.80	14	1.9	34
2-Propanol	0.80	2.6	2.0	6.3
Carbon Disulfide	0.80	Not Detected	2.5	Not Detected
3-Chloropropene	0.80	Not Detected	2.5	Not Detected
Methylene Chloride	0.32	0.19 J	1.1	0.66 J
Methyl tert-butyl ether	0.16	Not Detected	0.58	Not Detected
trans-1,2-Dichloroethene	0.16	Not Detected	0.64	Not Detected
Hexane	0.16	0.10 J	0.57	0.36 J
1,1-Dichloroethane	0.16	Not Detected	0.65	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.80	2.7	2.4	7.9
cis-1,2-Dichloroethene	0.16	Not Detected	0.64	Not Detected
Tetrahydrofuran	0.80	Not Detected	2.4	Not Detected
Chloroform	0.16	Not Detected	0.79	Not Detected
1,1,1-Trichloroethane	0.16	Not Detected	0.88	Not Detected
Cyclohexane	0.16	Not Detected	0.55	Not Detected
Carbon Tetrachloride	0.16	0.070 J	1.0	0.44 J
2,2,4-Trimethylpentane	0.80	Not Detected	3.8	Not Detected
Benzene	0.16	0.091 J	0.51	0.29 J
1,2-Dichloroethane	0.16	Not Detected	0.65	Not Detected
Heptane	0.16	0.17	0.66	0.70
Trichloroethene	0.16	Not Detected	0.86	Not Detected
1,2-Dichloropropane	0.16	Not Detected	0.74	Not Detected
1,4-Dìoxane	0.16	Not Detected	0.58	200 Maries
Bromodichloromethane	0.16	Not Detected	1.1 7/3	Not Detected
cis-1,3-Dichloropropene	0.16	Not Detected	0.73	Dallot Detected
4-Methyl-2-pentanone	0.16	0.12 J	0.73 0.66 0.61	,0.50 J
Toluene	0.16	2.2	0.61 (鉛)	LIC #94
trans-1,3-Dichloropropene	0.16	Not Detected	0.73	Not Detected
1,1,2-Trichloroethane	0.16	Not Detected	0.73	Not Detected
Tetrachloroethene	0.16	Not Detected	1.1	Chatrosteted
2-Hexanone	0.80	0.38 J	3.3	1.5 J

Client Sample ID: B7IA-1(061016) Lab ID#: 1606298A-01A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	20061514 Date of Collection: 1.61 Date of Analysis: 6			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.16	Not Detected	1.4	Not Detected
1,2-Dibromoethane (EDB)	0.16	Not Detected	1.2	Not Detected
Chlorobenzene	0.16	Not Detected	0.74	Not Detected
Ethyl Benzene	0.16	0.051 J	0.70	0.22 J
m,p-Xylene	0.16	0.12 J	0.70	0.52 J
o-Xylene	0.16	0.050 J	0.70	0.22 J
Styrene	0.16	0.034 J	0.68	0.14 J
Bromoform	0.16	Not Detected	1.7	Not Detected
Cumene	0.16	Not Detected	0.79	Not Detected
1,1,2,2-Tetrachloroethane	0.16	Not Detected	1,1	Not Detected
Propylbenzene	0.16	Not Detected	0.79	Not Detected
4-Ethyltoluene	0.16	0.036 J	0.79	0.18 J
1,3,5-Trimethylbenzene	0.16	Not Detected	0.79	Not Detected
1,2,4-Trimethylbenzene	0.16	0.051 J	0.79	0,25 J
1,3-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected
1,4-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected
alpha-Chlorotoluene	0.16	Not Detected	0.83	Not Detected
1,2-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected
1,2,4-Trichlorobenzene	0.80	Not Detected	6.0	Not Detected
Hexachlorobutadiene	0.80	Not Detected	8.6	Not Detected
Naphthalene	0.80	0.028 J	4.2	0.15 J

J = Estimated value.

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	113	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	95	70-130

Client Sample ID: B7IA-1(061016) Lab Duplicate Lab ID#: 1606298A-01AA

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	20061522 1.61	Date of Collection: 6/11/16 6:50:00 P Date of Analysis: 6/16/16 10:24 AM		
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	0.16	0.55	0.80	2.7
Freon 114	0.16	Not Detected	1.1	Not Detected
Chloromethane	0.80	1.0	1.7	2.2
Vinyl Chloride	0.16	Not Detected	0.41	Not Detected
1,3-Butadiene	0.16	Not Detected	0.36	Not Detected
Bromomethane	0.80	Not Detected	3.1	Not Detected
Chloroethane	0.80	Not Detected	2.1	Not Detected
Freon 11	0.16	7.8	0.90	44
Ethanol	0.80	7.6	1.5	14
Freon 113	0.16	0.064 J	1.2	0.49 J
1,1-Dichloroethene	0.16	Not Detected	0.64	Not Detected
Acetone	0.80	14	1.9	35
2-Propanol	0.80	2.4	2.0	5.9
Carbon Disulfide	0.80	Not Detected	2.5	Not Detected
3-Chloropropene	0.80	Not Detected	2.5	Not Detected
Methylene Chloride	0.32	0.18 J	1.1	0.62 J
Methyl tert-butyl ether	0.16	Not Detected	0.58	Not Detected
trans-1,2-Dichloroethene	0.16	Not Detected	0.64	Not Detected
Hexane	0.16	0.090 J	0.57	0.32 J
1,1-Dichloroethane	0.16	Not Detected	0.65	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.80	2.8	2.4	8.1
cis-1,2-Dichloroethene	0.16	Not Detected	0.64	Not Detected
Tetrahydrofuran	0.80	Not Detected	2.4	Not Detected
Chloroform	0.16	Not Detected	0.79	Not Detected
1,1,1-Trichloroethane	0.16	Not Detected	0.88	Not Detected
Cyclohexane	0.16	Not Detected	0.55	Not Detected
Carbon Tetrachloride	0.16	0.069 J	1.0	0.43 J
2,2,4-Trimethylpentane	0.80	Not Detected	3.8	Not Detected
Benzene	0.16	0.086 J	0.51	0.28 J
1,2-Dichloroethane	0.16	Not Detected	0.65	Not Detected
Heptane	0.16	0.20	0.66	0.82
Trichloroethene	0.16	Not Detected	0.86	Not Detected
1,2-Dichloropropane	0.16	Not Detected	0.74	Not Detected
1,4-Dioxane	0.16	Not Detected	0.58	Not Detected
Bromodichloromethane	0.16	Not Detected	1.1	Not Detected
cis-1,3-Dichloropropene	0.16	Not Detected	0.73	Not Detected
4-Methyl-2-pentanone	0.16	0.12 J	0.66	0.51 J
Toluene	0.16	2.2	0.81	
trans-1,3-Dichloropropene	0.16	Not Detected	455	Detected
1,1,2-Trichloroethane	0.16	Not Detected	0.88	Detected
Tetrachloroethene	0.16	Not Detected		Canal No Catected
2-Hexanone	0.80	0.35 J	LIC #	EZ 第4 J

180041 of 0574

Client Sample ID: B7IA-1(061016) Lab Duplicate Lab ID#: 1606298A-01AA

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	20061522 1.61	Date of Collection: 6/11/16 6:50:00 PM Date of Analysis: 6/16/16 10:24 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.16	Not Detected	1.4	Not Detected
1,2-Dibromoethane (EDB)	0.16	Not Detected	1.2	Not Detected
Chlorobenzene	0.16	Not Detected	0.74	Not Detected
Ethyl Benzene	0.16	Not Detected	0.70	Not Detected
m,p-Xylene	0.16	0.12 J	0.70	0.52 J
o-Xylene	0.16	0.048 J	0.70	0.21 J
Styrene	0.16	0.027 J	0.68	0.12 J
Bromoform	0.16	Not Detected	1.7	Not Detected
Cumene	0.16	Not Detected	0.79	Not Detected
1,1,2,2-Tetrachloroethane	0.16	Not Detected	1.1	Not Detected
Propylbenzene	0.16	Not Detected	0.79	Not Detected
4-Ethyltoluene	0.16	0.037 J	0.79	0.18 J
1,3,5-Trimethylbenzene	0.16	Not Detected	0.79	Not Detected
1,2,4-Trimethylbenzene	0.16	0.040 J	0.79	0.20 J
1,3-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected
1,4-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected
alpha-Chlorotoluene	0.16	Not Detected	0.83	Not Detected
1,2-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected
1,2,4-Trichlorobenzene	0.80	Not Detected	6.0	Not Detected
Hexachlorobutadiene	0.80	Not Detected	8.6	Not Detected
Naphthalene	0.80	0.019 J	4.2	0.10 J

J = Estimated value.

Container Type: 6 Liter Summa Canister (100% Certified)

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	111	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	93	70-130

Client Sample ID: B7IA-1D(061016) Lab ID#: 1606298A-02A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	20061515 1.67	Date of Collection: 6/11/16 6:50:00 PM Date of Analysis: 6/15/16 09:02 PM		
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	0.17	0.58	0.82	2.8
Freon 114	0.17	Not Detected	1.2	Not Detected
Chloromethane	0.84	1.1	1,7	2.3
Vinyl Chloride	0.17	Not Detected	0.43	Not Detected
1,3-Butadiene	0.17	Not Detected	0.37	Not Detected
Bromomethane	0.84	Not Detected	3.2	Not Detected
Chloroethane	0.84	Not Detected	2.2	Not Detected
Freon 11	0.17	7.5	0.94	42
Ethanol	0.84	5.8	1.6	11
Freon 113	0.17	0.072 J	1.3	0.55 J
1,1-Dichloroethene	0.17	Not Detected	0.66	Not Detected
Acetone	0.84	6.2	2.0	15
2-Propanol	0.84	2.5	2.0	6.1
Carbon Disulfide	0.84	0.069 J	2.6	0.22 J
3-Chloropropene	0.84	Not Detected	2.6	Not Detected
Methylene Chloride	0.33	0.46	1.2	1.6
Methyl tert-butyl ether	0.17	Not Detected	0.60	Not Detected
trans-1,2-Dichloroethene	0.17	Not Detected	0.66	Not Detected
Hexane	0.17	0.11 J	0.59	0.40 J
1,1-Dichloroethane	0.17	Not Detected	0.68	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.84	0.84	2.5	2.5
cis-1,2-Dichloroethene	0.17	Not Detected	0.66	Not Detected
Tetrahydrofuran	0.84	Not Detected	2.5	Not Detected
Chloroform	0.17	Not Detected	0.82	Not Detected
1,1,1-Trichloroethane	0.17	Not Detected	0.91	Not Detected
Cyclohexane	0.17	0.051 J	0.57	0.18 J
Carbon Tetrachloride	0.17	0.059 J	1.0	0.37 J
2,2,4-Trimethylpentane	0.84	Not Detected	3.9	Not Detected
Benzene	0.17	0.096 J	0.53	0.31 J
1,2-Dichloroethane	0.17	Not Detected	0.68	Not Detected
Heptane	0.17	0.10 J	0.68	0.41 J
Trichloroethene	0.17	Not Detected	0.90	Not Detected
1,2-Dichloropropane	0.17	Not Detected	0.77	Not Detected
1,4-Dioxane	0.17	Not Detected	0.60	Not Detected
Bromodichloromethane	0.17	Not Detected	1.1	Not Detected
cis-1,3-Dichloropropene	0.17	Not Detected	0.76	Not Detected
4-Methyl-2-pentanone	0.17	0.040 J	0.66	0.16 J
Toluene	0.17	2.2	SE	8.5
trans-1,3-Dichloropropene	0.17	Not Detected		Not Detected
1,1,2-Trichloroethane	0.17	Not Detected	The state of the s	Not Detected
Tetrachloroethene	0.17	Not Detected	Méndez	Not Detected
2-Hexanone	0.84	0.097 J	LIC-4 1888 /	0.40 J

Page 1

0073 of 0574

Client Sample ID: B7IA-1D(061016) Lab ID#: 1606298A-02A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	20061515 1.67	Date of Collection: 6/11/16 6: Date of Analysis: 6/15/16 09:0		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.17	Not Detected	1.4	Not Detected
1,2-Dibromoethane (EDB)	0.17	Not Detected	1.3	Not Detected
Chlorobenzene	0.17	Not Detected	0.77	Not Detected
Ethyl Benzene	0.17	0.053 J	0.72	0.23 J
m,p-Xylene	0,17	0.15 J	0.72	0.65 J
o-Xylene	0.17	0.065 J	0.72	0.28 J
Styrene	0.17	0.066 J	0.71	0.28 J
Bromoform	0.17	Not Detected	1.7	Not Detected
Cumene	0.17	Not Detected	0.82	Not Detected
1,1,2,2-Tetrachloroethane	0.17	Not Detected	1.1	Not Detected
Propylbenzene	0.17	Not Detected	0.82	Not Detected
4-Ethyltoluene	0.17	0.051 J	0.82	0.25 J
1,3,5-Trimethylbenzene	0.17	Not Detected	0.82	Not Detected
1,2,4-Trimethylbenzene	0.17	0.050 J	0.82	0.25 J
1,3-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,4-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
alpha-Chlorotoluene	0.17	Not Detected	0.86	Not Detected
1,2-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,2,4-Trichlorobenzene	0.84	Not Detected	6.2	Not Detected
Hexachlorobutadiene	0.84	Not Detected	8.9	Not Detected
Naphthalene	0.84	0.019 J	4.4	0.10 J

J = Estimated value

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	116	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	95	70-130

Client Sample ID: B7IA-2(061016) Lab ID#: 1606298A-03A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	20061516 1.60		of Collection: 6/1 of Analysis: 6/15	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.16	0.61	0.79	3.0
Freon 114	0.16	Not Detected	1.1	Not Detected
Chloromethane	0.80	0.88	1.6	1.8
Vinyl Chloride	0.16	Not Detected	0.41	Not Detected
1,3-Butadiene	0.16	0.070 J	0.35	0.15 J
Bromomethane	0.80	Not Detected	3,1	Not Detected
Chloroethane	0.80	Not Detected	2.1	Not Detected
Freon 11	0.16	1.0	0.90	5.8
Ethanol	0.80	12	1.5	24
Freon 113	0.16	0.074 J	1.2	0.57 J
1,1-Dichloroethene	0.16	Not Detected	0.63	Not Detected
Acetone	0.80	12	1.9	28
2-Propanol	0.80	5.5	2.0	14
Carbon Disulfide	0.80	0.072 J	2.5	0.22 J
3-Chloropropene	0.80	Not Detected	2.5	Not Detected
Methylene Chloride	0.32	0.21 J	1.1	0.74 J
Methyl tert-butyl ether	0.16	Not Detected	0.58	Not Detected
trans-1,2-Dichloroethene	0.16	Not Detected	0.63	Not Detected
Hexane	0.16	0.078 J	0.56	0.28 J
1,1-Dichloroethane	0.16	Not Detected	0.65	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.80	2.4	2.4	7.1
cis-1,2-Dichloroethene	0.16	Not Detected	0.63	Not Detected
Tetrahydrofuran	0.80	Not Detected	2.4	Not Detected
Chloroform	0.16	0.039 J	0.78	0.19 J
1,1,1-Trichloroethane	0.16	Not Detected	0.87	Not Detected
Cyclohexane	0.16	Not Detected	0.55	Not Detected
Carbon Tetrachloride	0.16	0.082 J	1.0	0.52 J
2,2,4-Trimethylpentane	0.80	Not Detected	3.7	Not Detected
Benzene	0.16	0.085 J	0.51	0.27 J
1,2-Dichloroethane	0.16	Not Detected	0.65	Not Detected
Heptane	0.16	Not Detected	0.66	Not Detected
Trichloroethene	0.16	Not Detected	0.86	Not Detected
1,2-Dichloropropane	0.16	Not Detected	0.74	Not Detected
1,4-Dioxane	0.16	0.20	0.58	0.71
Bromodichloromethane	0.16	Not Detected	1.1	Not Detected
cis-1,3-Dichloropropene	0.16	Not Detected	0.73	Not Detected
4-Methyl-2-pentanone	0.16	0.10 J	0.66	0.43 J
Toluene	0.16	0.22	0.60	0.82
trans-1,3-Dichloropropene	0.16	Not Detected	O KANAMAD	Not Detected
1,1,2-Trichloroethane	0.16	Not Detected	18787	at Detected
Tetrachloroethene 2-Hexanone	0.16 0.80	Not Detected 0.34 J	3.3 Méndez	Detected 1.4 J

Client Sample ID: B7IA-2(061016) Lab ID#: 1606298A-03A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	20061516 1.60		11/16 7:50:00 PM 5/16 09:41 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.16	Not Detected	1.4	Not Detected
1,2-Dibromoethane (EDB)	0.16	Not Detected	1.2	Not Detected
Chlorobenzene	0.16	Not Detected	0.74	Not Detected
Ethyl Benzene	0.16	Not Detected	0.69	Not Detected
m,p-Xylene	0.16	0.098 J	0.69	0.42 J
o-Xylene	0.16	Not Detected	0.69	Not Detected
Styrene	0.16	0,045 J	0.68	0.19 J
Bromoform	0.16	Not Detected	1.6	Not Detected
Cumene	0.16	Not Detected	0.79	Not Detected
1,1,2,2-Tetrachloroethane	0.16	Not Detected	1.1	Not Detected
Propylbenzene	0.16	Not Detected	0.79	Not Detected
4-Ethyltoluene	0.16	0.034 J	0.79	0,17 J
1,3,5-Trimethylbenzene	0.16	Not Detected	0.79	Not Detected
1,2,4-Trimethylbenzene	0.16	0.054 J	0.79	0.27 J
1,3-Dichlorobenzene	0.16	Not Detected	0.96	Not Detected
1,4-Dichlorobenzene	0.16	Not Detected	0.96	Not Detected
alpha-Chlorotoluene	0.16	Not Detected	0.83	Not Detected
1,2-Dichlorobenzene	0.16	Not Detected	0.96	Not Detected
1,2,4-Trichlorobenzene	0.80	Not Detected	5.9	Not Detected
Hexachlorobutadiene	0.80	Not Detected	8.5	Not Detected
Naphthalene	0.80	0.033 J	4.2	0.17 J

J = Estimated value.

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	118	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	95	70-130

Client Sample ID: B7IA-3(061016) Lab ID#: 1606298A-04A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	20061517 1.87		e of Collection: 6/1 e of Analysis: 6/15	
· ·	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	0.19	0.49	0.92	2.4
Freon 114	0.19	Not Detected	1.3	Not Detected
Chloromethane	0.94	1.0	1.9	2.2
Vinyl Chloride	0.19	Not Detected	0.48	Not Detected
1,3-Butadiene	0.19	Not Detected	0.41	Not Detected
Bromomethane	0.94	Not Detected	3.6	Not Detected
Chloroethane	0.94	Not Detected	2.5	Not Detected
Freon 11	0.19	1,1	1.0	6.1
Ethanol	0.94	26	1.8	48
Freon 113	0.19	0.078 J	1,4	0.59 J
1,1-Dichloroethene	0.19	Not Detected	0.74	Not Detected
Acetone	0.94	12	2.2	27
2-Propanol	0.94	33	2.3	82
Carbon Disulfide	0.94	0.12 J	2.9	0.39 J
3-Chloropropene	0.94	Not Detected	2.9	Not Detected
Methylene Chloride	0.37	0.27 J	1.3	0.92 J
Methyl tert-butyl ether	0.19	Not Detected	0.67	Not Detected
trans-1,2-Dichloroethene	0.19	Not Detected	0.74	Not Detected
Hexane	0.19	0.13 J	0.66	0.46 J
1,1-Dichloroethane	0.19	Not Detected	0.76	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.94	1.0	2.8	3.0
cis-1,2-Dichloroethene	0.19	Not Detected	0.74	Not Detected
Tetrahydrofuran	0.94	Not Detected	2.8	Not Detected
Chloroform	0.19	Not Detected	0.91	Not Detected
1,1,1-Trichloroethane	0.19	Not Detected	1.0	Not Detected
Cyclohexane	0.19	0.14 J	0.64	0.48 J
Carbon Tetrachloride	0.19	0.085 J	1.2	0.48 J
2,2,4-Trimethylpentane	0.94	Not Detected	4.4	Not Detected
Benzene	0.19	0.093 J	0.60	0.30 J
1,2-Dichloroethane	0.19	0.12 J	0.76	0.49 J
Heptane	0,19			0.76 J
richloroethene	0.19	0.19 J Not Detected	0.77	
1,2-Dichloropropane	0.19		1.0	Not Detected
1,4-Dioxane		Not Detected	0.86	Not Detected
Bromodichloromethane	0.19 0.19	Not Detected	0.67 1.2	Not Detected
		Not Detected		Not Detected
cis-1,3-Dichloropropene	0.19	Not Detected	0.65	Not Detected
4-Methyl-2-pentanone	0.19	0.074 J	0	0.30 J
Toluene	0.19	0.37	I am	1.4
trans-1,3-Dichloropropene	0.19	Not Detected	19 fat Infante	ot Detected
1,1,2-Trichloroethane	0.19	Not Detected	Mendez	1 Detected
Tetrachloroethene	0.19	Not Detected	\ .\ L1(3 # 1888	Supt Detected
2-Hexanone	0.94	Not Detected	3.8	Mot Detected

Page 1

0142 of 0574

Client Sample ID: B7IA-3(061016) Lab ID#: 1606298A-04A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	File Name: 20061517 Dil. Factor: 1.87		Date of Collection: 6/11/16 7:47:00 PM Date of Analysis: 6/15/16 10:20 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Dibromochloromethane	0.19	Not Detected	1.6	Not Detected	
1,2-Dibromoethane (EDB)	0.19	Not Detected	1.4	Not Detected	
Chlorobenzene	0.19	Not Detected	0.86	Not Detected	
Ethyl Benzene	0.19	0.073 J	0.81	0.32 J	
m,p-Xylene	0.19	0.16 J	0.81	0.69 J	
o-Xylene	0.19	0.080 J	0.81	0.34 J	
Styrene	0.19	0.11 J	0.80	0.46 J	
Bromoform	0.19	Not Detected	1.9	Not Detected	
Cumene	0.19	Not Detected	0.92	Not Detected	
1,1,2,2-Tetrachloroethane	0.19	Not Detected	1.3	Not Detected	
Propylbenzene	0.19	Not Detected	0.92	Not Detected	
4-Ethyltoluene	0.19	0.10 J	0.92	0.50 J	
1,3,5-Trimethylbenzene	0.19	0.055 J	0.92	0.27 J	
1,2,4-Trimethylbenzene	0.19	0.12 J	0.92	0.62 J	
1,3-Dichlorobenzene	0.19	Not Detected	1.1	Not Detected	
1,4-Dichlorobenzene	0.19	Not Detected	1.1	Not Detected	
alpha-Chlorotoluene	0.19	Not Detected	0.97	Not Detected	
1,2-Dichlorobenzene	0.19	Not Detected	1.1	Not Detected	
1,2,4-Trichlorobenzene	0.94	Not Detected	6.9	Not Detected	
Hexachtorobutadiene	0.94	Not Detected	10	Not Detected	
Naphthalene	0.94	0.060 J	4.9	0.31 J	

J = Estimated value.

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	118	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	96	70-130

Client Sample ID: B7IA-4(061016) Lab ID#: 1606298A-05A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	20061518 1.59		e of Collection: 6/11 e of Analysis: 6/15/1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.16	0.61	0.79	3.0
Freon 114	0.16	Not Detected	1.1	Not Detected
Chloromethane	0.80	1.1	1.6	2.2
Vinyl Chloride	0.16	Not Detected	0.41	Not Detected
1,3-Butadiene	0.16	Not Detected	0.35	Not Detected
Bromomethane	0.80	Not Detected	3.1	Not Detected
Chloroethane	0.80	Not Detected	2.1	Not Detected
Freon 11	0.16	10	0.89	57
Ethanol	0.80	3.1	1.5	5.8
Freon 113	0.16	0.10 J	1.2	0.77 J
1,1-Dichloroethene Acetone	0.16 0.80	Not Detected 9.1	0.63 1.9	Not Detected 22
		2.2		
2-Propanol Carbon Disulfide	0.80 0.80	Not Detected	2.0 2.5	5.4 Not Detected
3-Chioropropene	0.80	Not Detected	2.5	Not Detected
Methylene Chloride	0.32	0.25 J	1.1	0.86 J
Methyl tert-butyl ether	0.32	Not Detected		Not Detected
-	0.16	Not Detected	0.57 0.63	
trans-1,2-Dichloroethene Hexane	0.16			Not Detected
nexane 1,1-Dichloroethane	0.16	0.11 J Not Detected	0.56 0.64	0.40 J
				Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.80	1.7	2.3	5.0
cis-1,2-Dichloroethene	0.16	Not Detected	0.63	Not Detected
Tetrahydrofuran	0.80	Not Detected	2.3	Not Detected
Chloroform	0.16	Not Detected	0.78	Not Detected
1,1,1-Trichloroethane	0.16	Not Detected	0.87	Not Detected
Cyclohexane	0.16	0.039 J	0.55	0.13 J
Carbon Tetrachloride	0.16	0.080 J	1.0	0.50 J
2,2,4-Trimethylpentane	0.80	Not Detected	3.7	Not Detected
Benzene	0.16	L 080.0	0.51	0.26 J
1,2-Dichloroethane	0.16	Not Detected	0.64	Not Detected
Heptane	0.16	0.14 J	0.65	0.59 J
Trichloroethene	0.16	Not Detected	0.85	Not Detected
1,2-Dichloropropane	0.16	Not Detected	0.73	Not Detected
1,4-Dioxane	0.16	Not Detected	0.57	Not Detected
Bromodichloromethane	0.16	Not Detected	SOCIADO	Not Detected
cis-1,3-Dichloropropene	0.16	Not Detected	/30	Not Detected
4-Methyl-2-pentanone	0.16	0.070 J	0.65	0.29 J
Foluene	0.16	0.55	0.60fael Infan	1 200
trans-1,3-Dichloropropene	0.16	Not Detected	0.72Mendez	Detected
1,1,2-Trichloroethane	0.16	Not Detected	(0.87IC # 1660	
Tetrachloroethene 2-Hexanone	0.16 0.80	Not Detected 0.16 J	COLINER	Detected 0.66 J

Client Sample ID: B7IA-4(061016) Lab ID#: 1606298A-05A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	20061518 1.59	Date of Collection: 6/11 Date of Analysis: 6/15/1			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Dibromochloromethane	0.16	Not Detected	1.4	Not Detected	
1,2-Dibromoethane (EDB)	0.16	Not Detected	1.2	Not Detected	
Chlorobenzene	0.16	Not Detected	0.73	Not Detected	
Ethyl Benzene	0.16	Not Detected	0.69	Not Detected	
m,p-Xylene	0.16	0.11 J	0.69	0.48 J	
o-Xylene	0.16	0.047 J	0.69	0.20 J	
Styrene	0.16	0.043 J	0.68	0.18 J	
Bromoform	0.16	Not Detected	1.6	Not Detected	
Cumene	0.16	Not Detected	0.78	Not Detected	
1,1,2,2-Tetrachloroethane	0.16	Not Detected	1.1	Not Detected	
Propylbenzene	0.16	Not Detected	0.78	Not Detected	
4-Ethyltoluene	0.16	0.036 J	0.78	0,18 J	
1,3,5-Trimethylbenzene	0.16	Not Detected	0.78	Not Detected	
1,2,4-Trimethylbenzene	0.16	0.046 J	0.78	0.22 J	
1,3-Dichlorobenzene	0.16	Not Detected	0.96	Not Detected	
1,4-Dichlorobenzene	0.16	Not Detected	0.96	Not Detected	
alpha-Chlorotoluene	0.16	Not Detected	0.82	Not Detected	
1,2-Dichlorobenzene	0.16	Not Detected	0.96	Not Detected	
1,2,4-Trichlorobenzene	0.80	Not Detected	5.9	Not Detected	
Hexachlorobutadiene	0.80	Not Detected	8.5	Not Detected	
Naphthalene	0.80	0.024 J	4.2	0.12 J	

J = Estimated value:

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	120	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	96	70-130

Client Sample ID: B7IA-5(061016) Lab ID#: 1606298A-06A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor: Compound	20061519 1.69		of Collection: 6 of Analysis: 6/1	/11/16 7:09:00 PM 6/16 08:28 AM
	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.17	0.61	0.84	3.0
Freon 114	0.17	Not Detected	1.2	Not Detected
Chloromethane	0.84	1.0	1.7	2.1
Vinyl Chloride	0.17	Not Detected	0.43	Not Detected
1,3-Butadiene	0.17	Not Detected	0.37	Not Detected
Bromomethane	0.84	Not Detected	3.3	Not Detected
Chloroethane	0.84	Not Detected	2.2	Not Detected
Freon 11	0.17	3.1	0.95	18
Ethanol	0.84	5.0	1.6	9.5
Freon 113	0.17	0.13 J	1.3	1.0 J
1,1-Dichloroethene	0.17	Not Detected	0.67	Not Detected
Acetone	0.84	8.9	2.0	21
2-Propanol	0.84	3.2	2.1	7.8
Carbon Disulfide	0.84	0.097 J	2.6	0.30 J
3-Chloropropene	0.84	Not Detected	2.6	Not Detected
Methylene Chloride	0.34	0.27 J	1.2	0.94 J
Methyl tert-butyl ether	0.17	Not Detected	0.61	Not Detected
trans-1,2-Dichloroethene	0.17	Not Detected	0.67	Not Detected
Hexane	0.17	0.078 J	0.60	0.28 J
1,1-Dichloroethane	0.17	Not Detected	0.68	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.84	1.7	2.5	5.1
cis-1,2-Dichloroethene	0.17	Not Detected	0.67	Not Detected
Tetrahydrofuran	0.84	Not Detected	2.5	Not Detected
Chloroform	0.17	0.066 J	0.82	0.32 J
1,1,1-Trichloroethane	0.17	Not Detected	0.92	Not Detected
Cyclohexane	0.17	Not Detected	0.58	Not Detected
Carbon Tetrachloride	0.17	0.073 J	1.1	0.46 J
2,2,4-Trimethylpentane	0.84	Not Detected	3.9	Not Detected
Benzene	0.17	0.091 J	0.54	0.29 J
1,2-Dichloroethane	0.17	Not Detected	0.68	Not Detected
Heptane	0.17	0,11 J	0.69	0,45 J
Trichloroethene	0.17	Not Detected	0.91	Not Detected
1,2-Dichloropropane	0.17	Not Detected	0.78	Not Detected
1,4-Dioxane	0.17	Not Detected	0.61	Not Detected
Bromodichloromethane	0.17	Not Detected	1.1	Not Detected
cis-1,3-Dichloropropene	0.17	Not Detected	0.77	Not Detected
4-Methyl-2-pentanone	0.17	0.083 J	0.77	Not Detected
Toluene	0.17	0.065 3	0.64	OF TOE
trans-1,3-Dichloropropene	0.17	Not Detected	0.54	Alot Detected
1,1,2-Trichloroethane	0.17	Not Detected	0.77	Not Defected
Tetrachloroethene	0.17			- Not Delected
i etracnioroetnene 2-Hexanone		Not Detected	1.1	c Not Herecken
r-mexalione	0.84	0.26 J	3.5	1.03

Client Sample ID: B7IA-5(061016) Lab ID#: 1606298A-06A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	20061519 1.69	Date of Collection: 6/11/16 7:09:00 P Date of Analysis: 6/16/16 08:28 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.17	Not Detected	1.4	Not Detected
1,2-Dibromoethane (EDB)	0.17	Not Detected	1.3	Not Detected
Chlorobenzene	0.17	Not Detected	0.78	Not Detected
Ethyl Benzene	0.17	Not Detected	0.73	Not Detected
m,p-Xylene	0.17	0.076 J	0.73	0.33 J
o-Xylene	0.17	Not Detected	0.73	Not Detected
Styrene	0.17	0.035 J	0.72	0.15 J
Bromoform	0.17	Not Detected	1.7	Not Detected
Cumene	0.17	Not Detected	0.83	Not Detected
1,1,2,2-Tetrachloroethane	0.17	Not Detected	1.2	Not Detected
Propylbenzene	0.17	Not Detected	0.83	Not Detected
4-Ethyltoluene	0.17	Not Detected	0.83	Not Detected
1,3,5-Trimethylbenzene	0.17	Not Detected	0.83	Not Detected
1,2,4-Trimethylbenzene	0.17	0.041 J	0.83	0.20 J
1,3-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,4-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
alpha-Chiorotoluene	0.17	Not Detected	0.87	Not Detected
1,2-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,2,4-Trichlorobenzene	0.84	Not Detected	6.3	Not Detected
Hexachlorobutadiene	0.84	Not Detected	9.0	Not Detected
Naphthalene	0.84	0.085 J	4.4	0.45 J

J = Estimated value.

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	118	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	94	70-130

Client Sample ID: B7IA-6(061016) Lab ID#: 1606298A-07A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	20061520 1.53	Date of Collection: 6/11/16 7:37:00 PM Date of Analysis: 6/16/16 09:07 AM		
	Rpt, Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	0.15	0.60	0.76	3.0
Freon 114	0.15	Not Detected	1.1	Not Detected
Chloromethane	0.76	0.99	1,6	2.0
Vinyl Chloride	0.15	Not Detected	0.39	Not Detected
1,3-Butadiene	0.15	Not Detected	0.34	Not Detected
Bromomethane	0.76	Not Detected	3.0	Not Detected
Chloroethane	0.76	Not Detected	2.0	Not Detected
Freon 11	0.15	1.7	0.86	9.8
Ethanol	0.76	17	1.4	32
Freon 113	0.15	0.11 J	1.2	0.84 J
1,1-Dichloroethene	0.15	Not Detected	0.61	Not Detected
Acetone	0.76	5.8	1.8	14
2-Propanol	0.76	5.1	1.9	12
Carbon Disulfide	0.76	0.086 J	2.4	0.27 J
3-Chloropropene	0.76	Not Detected	2.4	Not Detected
Methylene Chloride	0.31	0.54	1,1	1.9
Methyl tert-butyl ether	0.15	Not Detected	0.55	Not Detected
trans-1,2-Dichloroethene	0.15	Not Detected	0.61	Not Detected
Hexane	0.15	0.17	0.54	0.59
1,1-Dichloroethane	0.15	Not Detected	0.62	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.76	2.0	2.2	6.0
cis-1,2-Dichloroethene	0.15	Not Detected	0.61	Not Detected
Tetrahydrofuran	0.76	Not Detected	2.2	Not Detected
Chloroform	0.15	0.057 J	0.75	0.28 J
1,1,1-Trichloroethane	0.15	Not Detected	0.83	Not Detected
Cyclohexane	0.15	0.13 J	0.53	0.43 J
Carbon Tetrachloride	0.15	0.079 J	0.96	0.50 J
2,2,4-Trimethylpentane	0.76	Not Detected	3.6	Not Detected
Benzene	0.15	0.11 J	0.49	0,35 J
1,2-Dichloroethane	0.15	Not Detected	0.62	Not Detected
Heptane	0.15	0.19	0.63	0.77
Trichloroethene	0.15	Not Detected	0.82	Not Detected
1,2-Dichloropropane	0.15	Not Detected	0.71	Not Detected
1,4-Dioxane	0.15	Not Detected	0.55	Not Detected
Bromodichloromethane	0.15	Not Detected	1.0	Not Detected
cis-1,3-Dichloropropene	0.15	Not Detected	0.69	enthal Prected
4-Methyl-2-pentanone	0.15	0.077 J	0.63	
Toluene	0.15	0.98	0.58	3.1
trans-1,3-Dichloropropene	0.15	Not Detected	0.69	Triae Nationale Title
1,1,2-Trichloroethane	0.15	Not Detected	0.83	Mande Detection
Tetrachloroethene	0.15	Not Detected	1.0 6	Flore Setected
2-Hexanone	0.76	0.15 J	3.1	0.62

Client Sample ID: B7IA-6(061016) Lab ID#: 1606298A-07A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	20061520 1.53	Date of Collection: 6/11/16 7:37:00 Pl Date of Analysis: 6/16/16 09:07 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.15	Not Detected	1.3	Not Detected
1,2-Dibromoethane (EDB)	0.15	Not Detected	1.2	Not Detected
Chlorobenzene	0.15	Not Detected	0.70	Not Detected
Ethyl Benzene	0.15	0.11 J	0.66	0.48 J
m,p-Xylene	0.15	0.29	0.66	1.2
o-Xylene	0.15	0.14 J	0.66	0.62 J
Styrene	0.15	0.18	0.65	0.78
Bromoform	0.15	Not Detected	1.6	Not Detected
Cumene	0.15	Not Detected	0.75	Not Detected
1,1,2,2-Tetrachloroethane	0.15	Not Detected	1.0	Not Detected
Propylbenzene	0.15	0.029 J	0.75	0.14 J
4-Ethyltoluene	0.15	0.13 J	0.75	0.66 J
1,3,5-Trimethylbenzene	0.15	0.066 J	0.75	0.32 J
1,2,4-Trimethylbenzene	0.15	0.24	0.75	1.2
1,3-Dichlorobenzene	0.15	Not Detected	0.92	Not Detected
1,4-Dichlorobenzene	0.15	Not Detected	0.92	Not Detected
alpha-Chlorotoluene	0.15	Not Detected	0.79	Not Detected
1,2-Dichlorobenzene	0.15	Not Detected	0.92	Not Detected
1,2,4-Trichlorobenzene	0.76	Not Detected	5.7	Not Detected
Hexachlorobutadiene	0.76	Not Detected	8.2	Not Detected
Naphthalene	0.76	0.16 J	4.0	0.83 J

J = Estimated value.

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	120	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	93	70-130

Client Sample ID: B7AA(061016) Lab ID#: 1606298A-08A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Dil. Factor:	1.88	Date	of Analysis: 6/16/	16 09:45 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount
				(ug/m3)
Freon 12	0.19	0.58	0.93	2.9
Freon 114	0.19	Not Detected	1.3	Not Detected
Chloromethane	0.94	0.91 J	1.9	1.9 J
Vinyl Chloride	0.19	Not Detected	0.48	Not Detected
1,3-Butadiene	0.19	Not Detected	0.42	Not Detected
Bromomethane	0.94	Not Detected	3.6	Not Detected
Chloroethane	0.94	Not Detected	2.5	Not Detected
Freon 11	0.19	0.28	1.0	1.6
Ethanol	0.94	0.94	1.8	1.8
Freon 113	0.19	0,12 J	1.4	0.93 J
1,1-Dichloroethene	0.19	Not Detected	0.74	Not Detected
Acetone	0.94	5.8	2.2	14
2-Propanol	0.94	0.63 J	2.3	1.6 J
Carbon Disulfide	0.94	Not Detected	2.9	Not Detected
3-Chloropropene	0.94	Not Detected	2.9	Not Detected
Methylene Chloride	0.38	0.24 J	1.3	0.83 J
Methyl tert-butyl ether	0.19	Not Detected	0.68	Not Detected
trans-1,2-Dichloroethene	0.19	Not Detected	0.74	Not Detected
Hexane	0.19	0.072 J	0.66	0.25 J
1,1-Dichloroethane	0.19	Not Detected	0.76	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.94	0.91 J	2.8	2.7 J
cis-1,2-Dichloroethene	0.19	Not Detected	0.74	Not Detected
Tetrahydrofuran	0.94	Not Detected	2.8	Not Detected
Chloroform	0.19	Not Detected	0.92	Not Detected
1,1,1-Trichloroethane	0.19	Not Detected	1.0	Not Detected
Cyclohexane	0.19	Not Detected	0.65	Not Detected
Carbon Tetrachloride	0.19	0.073 J	1.2	0.46 J
2,2,4-Trimethylpentane	0.94	Not Detected	4.4	Not Detected
Benzene	0.19	0.079 J	0.60	0.25 J
1,2-Dichloroethane	0.19	Not Detected	0.76	Not Detected
Heptane	0.19	Not Detected	0.77	Not Detected
Trichloroethene	0.19	Not Detected	1.0	Not Detected
1,2-Dichloropropane	0.19	Not Detected	0.87	
1,4-Dioxane	0.19	0.14 J		Not Detected
r,4-Dioxarie Bromodichloromethane	0.19	Not Detected	0.68	0.52 J
			1.2	Not Detected
cis-1,3-Dichloropropene	0.19	Not Detected	0.85	Not Detected
4-Methyl-2-pentanone	0.19	0.054 J	0.77	0.22 J
Toluene	0.19	0.15 J	0.7	7€6 J
trans-1,3-Dichloropropene	0.19	Not Detected	0.8	Naturalected
1,1,2-Trichloroethane	0.19	Not Detected	4.0 fael	Infahlet Enected
Tetrachloroethene	0.19	Not Detected		dez Not eted
2-Hexanone	0.94	0.13 J	/ 3.8/ IC	1888 J.53/
	Pa	ge 1	Ellen	CENCINS 1 of 0:

Client Sample ID: B7AA(061016) Lab ID#: 1606298A-08A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	20061521 1.88	Date of Collection: 6/11/16 6:25:00 PM Date of Analysis: 6/16/16 09:45 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.19	Not Detected	1.6	Not Detected
1,2-Dibromoethane (EDB)	0.19	Not Detected	1.4	Not Detected
Chlorobenzene	0.19	Not Detected	0.86	Not Detected
Ethyl Benzene	0.19	Not Detected	0.82	Not Detected
m,p-Xylene	0.19	0.063 J	0.82	0.28 J
o-Xylene	0.19	Not Detected	0.82	Not Detected
Styrene	0.19	Not Detected	0.80	Not Detected
Bromoform	0.19	Not Detected	1.9	Not Detected
Cumene	0.19	Not Detected	0.92	Not Detected
1,1,2,2-Tetrachloroethane	0.19	Not Detected	1.3	Not Detected
Propylbenzene	0.19	Not Detected	0.92	Not Detected
4-Ethyltoluene	0.19	Not Detected	0.92	Not Detected
1,3,5-Trimethylbenzene	0.19	Not Detected	0.92	Not Detected
1,2,4-Trimethylbenzene	0.19	Not Detected	0.92	Not Detected
1,3-Dichlorobenzene	0.19	Not Detected	1.1	Not Detected
1,4-Dichlorobenzene	0.19	Not Detected	1.1	Not Detected
alpha-Chlorotoluene	0.19	Not Detected	0.97	Not Detected
1,2-Dichlorobenzene	0.19	Not Detected	1.1	Not Detected
1,2,4-Trichlorobenzene	0.94	Not Detected	7.0	Not Detected
Hexachlorobutadiene	0.94	Not Detected	10	Not Detected

J = Estimated value.

Naphthalene

Container Type: 6 Liter Summa Canister (100% Certified)

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	118	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	93	70-130

0.063 J

0.94

4.9

0.33 J

Client Sample ID: B7SS-1(061216) Lab ID#: 1606298B-09A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17061608 2.32		of Collection: 6/ of Analysis: 6/16	12/16 12:52:00 PM 6/16 07:02 PM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	1.2	Not Detected	5.7	Not Detected
Freon 114	1.2	Not Detected	8.1	Not Detected
Chloromethane	12	Not Detected UJ	24	Not Detected U
Vinyl Chloride	1.2	Not Detected	3.0	Not Detected
1,3-Butadiene	1.2	Not Detected	2.6	Not Detected
Bromomethane	12	Not Detected	45	Not Detected
Chloroethane	4.6	Not Detected	12	Not Detected
Freon 11	1.2	3.0	6.5	17
Ethanol	4.6	5.5 J0	8.7	10 J0
Freon 113	1.2	Not Detected	8.9	Not Detected
1,1-Dichloroethene	1.2	Not Detected	4.6	Not Detected
Acetone	12	54	28	130
2-Propanol	4.6	1,9 J	11	4.6 J
Carbon Disulfide	4.6	4.1 J	14	13 J
3-Chloropropene	4.6	Not Detected	14	Not Detected
Methylene Chloride	12	Not Detected	40	Not Detected
Methyl tert-butyl ether	1.2	Not Detected	4.2	Not Detected
trans-1,2-Dichloroethene	1.2	Not Detected	4.6	Not Detected
Hexane	1.2	Not Detected	4.1	Not Detected
1,1-Dichloroethane	1.2	Not Detected	4.7	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.6	2.9 J	14	8.6 J
cis-1,2-Dichloroethene	1.2	Not Detected	4.6	Not Detected
Tetrahydrofuran	1.2	Not Detected	3.4	Not Detected
Chloroform	1.2	Not Detected	5.7	
1,1,1-Trichloroethane	1.2	Not Detected	6.3	Not Detected Not Detected
Cyclohexane	1.2	Not Detected		
Carbon Tetrachloride	1.2		4.0	Not Detected
2,2,4-Trimethylpentane	1.2	Not Detected Not Detected	7.3	Not Detected
Benzene	1.2	Not Detected Not Detected	5.4	Not Detected
1,2-Dichloroethane	1.2		3.7	Not Detected
		Not Detected	4.7	Not Detected
Heptane	1.2	0.24 J	4.8	0.99 J
Trichloroethene	1.2	Not Detected	6.2	Not Detected
1,2-Dichloropropane	1.2	Not Detected	5.4	Not Detected
1,4-Dioxane Bromodichloromethane	4.6	Not Detected	17	Not Detected
	1.2	Not Detected	7.8	Not Detected
cis-1,3-Dichloropropene	1.2	Not Detected	5.3	 Not Detected
4-Methyl-2-pentanone	1.2	Not Detected	4.8	and the steel
Toluene	1.2	1.1 J	4.4	47
rans-1,3-Dichloropropene	1.2	Not Detected	5.3	luc Infame
1,1,2-Trichloroethane	1.2	Not Detected	6.3	Menor Detect
Tetrachloroethene	1.2	Not Detected	7.9	IC Not Retected
2-Hexanone	4.6	0.22 J	19	0.91
	D	age 1	1	CO FICENCY OF 03

Client Sample ID: B7SS-1(061216) Lab ID#: 1606298B-09A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17061608 2.32	Date of Collection: 6/12/16 12:0 Date of Analysis: 6/16/16 07:02		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.2	Not Detected	9.9	Not Detected
1.2 Dibromoothone (CDD)	4.2	Mak Datastani	0.0	Alles Phase in the

Compound	Kpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.2	Not Detected	9.9	Not Detected
1,2-Dibromoethane (EDB)	1.2	Not Detected	8.9	Not Detected
Chlorobenzene	1.2	Not Detected	5.3	Not Detected
Ethyl Benzene	1.2	Not Detected	5.0	Not Detected
m,p-Xylene	1.2	0.37 J	5,0	1.6 J
o-Xylene	1.2	Not Detected	5.0	Not Detected
Styrene	1.2	Not Detected	4.9	Not Detected
Bromoform	1.2	Not Detected	12	Not Detected
Cumene	1.2	Not Detected	5.7	Not Detected
1,1,2,2-Tetrachloroethane	1.2	Not Detected	8,0	Not Detected
Propylbenzene	1.2	Not Detected	5,7	Not Detected
4-Ethyltoluene	1.2	Not Detected	5.7	Not Detected
1,3,5-Trimethylbenzene	1.2	Not Detected	5.7	Not Detected
1,2,4-Trimethylbenzene	1.2	Not Detected	5.7	Not Detected
1,3-Dichlorobenzene	1.2	Not Detected	7.0	Not Detected
1,4-Dichlorobenzene	1.2	Not Detected	7.0	Not Detected
alpha-Chiorotoluene	1.2	Not Detected	6.0	Not Detected
1,2-Dichlorobenzene	1.2	Not Detected	7.0	Not Detected
1,2,4-Trichlorobenzene	4.6	Not Detected	34	Not Detected
Hexachlorobutadiene	4.6	Not Detected	49	Not Detected
Naphthalene	2.3	Not Detected	12	Not Detected

UJ = Analyte associated with low bias in the CCV.

Surrogates	%Recovery	Method Limits
Toluene-d8	102	70-130
1,2-Dichloroethane-d4	92	70-130
4-Bromofluorobenzene	100	70-130
		Méndez 署

J0 = Estimated value due to bias in the CCV.

J = Estimated value.

Client Sample ID: B7SS-1D(061216) Lab ID#: 1606298B-10A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17061609 2.48	Date of Collection: 6/12/16 12:51 Date of Analysis: 6/16/16 07:28 P		
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	1.2	Not Detected	6.1	Not Detected
Freon 114	1.2	Not Detected	8.7	Not Detected
Chloromethane	12	Not Detected UJ	26	Not Detected U.
Vinyl Chloride	1.2	Not Detected	3.2	Not Detected
1,3-Butadiene	1.2	Not Detected	2.7	Not Detected
Bromomethane	12	Not Detected	48	Not Detected
Chloroethane	5.0	Not Detected	13	Not Detected
Freon 11	1.2	2.9	7.0	16
Ethanol	5.0	Not Detected UJ	9.3	Not Detected U.
Freon 113	1.2	Not Detected	9.5	Not Detected
1,1-Dichloroethene	1.2	Not Detected	4.9	Not Detected
Acetone	12	13	29	31
2-Propanol	5.0	0.92 J	12	2.3 J
Carbon Disulfide	5.0	Not Detected	15	Not Detected
3-Chloropropene	5.0	Not Detected	16	Not Detected
Methylene Chloride	12	Not Detected	43	Not Detected
Methyl tert-butyl ether	1.2	Not Detected	4.5	Not Detected
trans-1,2-Dichloroethene	1.2	Not Detected	4.9	Not Detected
Hexane	1.2	Not Detected	4.4	Not Detected
1,1-Dichloroethane	1.2	Not Detected	5.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.0	2.3 J	15	6.7 J
cis-1,2-Dichloroethene	1.2	Not Detected	4.9	Not Detected
Tetrahydrofuran	1.2	Not Detected	3.6	Not Detected
Chloroform	1.2	Not Detected	6.0	Not Detected
1,1,1-Trichloroethane	1.2	Not Detected	6.8	Not Detected
Cyclohexane	1.2	Not Detected	4.3	Not Detected
Carbon Tetrachloride	1.2	Not Detected	7.8	Not Detected
2,2,4-Trimethylpentane	1.2	Not Detected	5.8	Not Detected
Benzene	1.2	Not Detected	4.0	Not Detected
1,2-Dichloroethane	1.2	Not Detected	5.0	Not Detected
Heptane	1.2	0.27 J	5.1	1.1 J
Trichloroethene	1.2	0.59 J	6.7	3.2 J
1,2-Dichloropropane	1.2	Not Detected	5.7	Not Detected
1,4-Dioxane	5.0	Not Detected	18	Not Detected
Bromodichloromethane	1.2	Not Detected	8.3	Not Detected
cis-1,3-Dichloropropene	1.2	Not Detected	5.6	- Net Detected
4-Methyl-2-pentanone	1.2	Not Detected	5.1	CAN Delected
Toluene	1.2	1.1 J	4.7	No.
trans-1,3-Dichloropropene	1.2	Not Detected	5.6	L North
1,1,2-Trichloroethane	1.2	Not Detected	68-	fael Hillian Determen
Tetrachloroethene	1.2	Not Detected	84	WHITE DELLE
2-Hexanone	5.0	Not Detected Not Detected		Not Detected
a i ionaliono	5.0	Not Detected	Cy Com	Not Detected
	Pa	age 1	10	O LICENSO 26 of 03

Client Sample ID: B7SS-1D(061216) Lab ID#: 1606298B-10A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17061609 2.48			Collection: 6/12/16 12:51:00 PM Analysis: 6/16/16 07:28 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Dibromochloromethane	1.2	Not Detected	10	Not Detected	
1,2-Dibromoethane (EDB)	1.2	Not Detected	9.5	Not Detected	
Chlorobenzene	1.2	Not Detected	5.7	Not Detected	
Ethyl Benzene	1.2	Not Detected	5.4	Not Detected	
m,p-Xylene	1.2	0,35 J	5.4	1.5 J	
o-Xylene	1.2	Not Detected	5.4	Not Detected	
Styrene	1.2	Not Detected	5.3	Not Detected	
Bromoform	1.2	Not Detected	13	Not Detected	
Cumene	1.2	0.90 J	6.1	4.4 J	
1,1,2,2-Tetrachloroethane	1.2	Not Detected	8.5	Not Detected	
Propylbenzene	1.2	Not Detected	6.1	Not Detected	
4-Ethyltoluene	1.2	Not Detected	6.1	Not Detected	
1,3,5-Trimethylbenzene	1.2	Not Detected	6.1	Not Detected	
1,2,4-Trimethylbenzene	1.2	Not Detected	6.1	Not Detected	
1,3-Dichlorobenzene	1.2	Not Detected	7.4	Not Detected	
1,4-Dichlorobenzene	1.2	Not Detected	7.4	Not Detected	
alpha-Chlorotoluene	1.2	Not Detected	6.4	Not Detected	
1,2-Dichlorobenzene	1,2	Not Detected	7.4	Not Detected	
1,2,4-Trichlorobenzene	5.0	Not Detected	37	Not Detected	
Hexachlorobutadiene	5.0	Not Detected	53	Not Detected	
Naphthalene	2.5	Not Detected	13	Not Detected	

UJ = Analyte associated with low bias in the CCV.

J = Estimated value

Surrogates	%Recovery	Limits
Toluene-d8	101	70-130
1,2-Dichloroethane-d4	91	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: B7SS-2(061216) Lab ID#: 1606298B-11A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17061610 2.32	Date of Collection: 6/12/16 1:47:00 PM Date of Analysis: 6/16/16 07:54 PM		
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	1.2	Not Detected	5.7	Not Detected
Freon 114	1.2	Not Detected	8.1	Not Detected
Chloromethane	12	Not Detected UJ	24	Not Detected U.J
Vinyl Chloride	1.2	Not Detected	3.0	Not Detected
1,3-Butadiene	1.2	Not Detected	2.6	Not Detected
Bromomethane	12	Not Detected	45	Not Detected
Chloroethane	4.6	Not Detected	12	Not Detected
Freon 11	1.2	3.8	6.5	21
Ethanol	4.6	32 J0	8.7	60 J0
Freon 113	1.2	Not Detected	8.9	Not Detected
1,1-Dichloroethene	1.2	Not Detected	4.6	Not Detected
Acetone	12	43	28	100
2-Propanol	4.6	4.6	11	11
Carbon Disulfide	4.6	3.1 J	14	9.7 J
3-Chioropropene	4.6	Not Detected	14	Not Detected
Methylene Chloride	12	Not Detected	40	Not Detected
Methyl tert-butyl ether	1.2	Not Detected	4.2	Not Detected
trans-1,2-Dichloroethene	1.2	Not Detected	4.6	Not Detected
Hexane	1.2	Not Detected	4.1	Not Detected
1,1-Dichloroethane	1.2	Not Detected	4.7	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.6	5.9	14	17
cis-1,2-Dichloroethene	1.2	Not Detected	4.6	Not Detected
Tetrahydrofuran	1.2	Not Detected	3.4	Not Detected
Chloroform	1.2	Not Detected	5.7	Not Detected
1,1,1-Trichloroethane	1.2	Not Detected	6.3	Not Detected
Cyclohexane	1.2	Not Detected	4.0	Not Detected
Carbon Tetrachloride	1.2	Not Detected	7.3	Not Detected
2,2,4-Trimethylpentane	1.2	Not Detected	5.4	Not Detected
Benzene	1.2	0.63 J	3.7	2.0 J
1,2-Dichloroethane	1.2	Not Detected	4.7	Not Detected
Heptane	1.2	3.4	4.8	14
Trichloroethene	1.2	Not Detected	6.2	Not Detected
1,2-Dichloropropane	1.2	Not Detected	5.4	Not Detected
1,4-Dioxane	4.6	Not Detected	17	Not Detected
Bromodichloromethane	1.2	Not Detected	7.8	Not Detected
cis-1,3-Dichloropropene	1.2	Not Detected	5.3	Not Detected
4-Methyl-2-pentanone	1.2	Not Detected		OCIADA Detected
Toluene	1.2	0.44 J	4.4	1
trans-1,3-Dichloropropene	1.2	Not Detected	5/3	Not Deterted
1,1,2-Trichloroethane	1.2	Not Detected	6.3	ael interior Red
Tetrachloroethene	1.2	Not Detected	7.92	Vot De Ged
2-Hexanone	4.6	0,34 J	100	1000
		age 1	CUME	LICENOIS of 030

Client Sample ID: B7SS-2(061216) Lab ID#: 1606298B-11A

EPA METHOD TO-15 GC/MS FULL SCAN

1		
File Name:	1706161 0	Date of Collection: 6/12/16 1:47:00 PM
Dil. Factor:	2.32	Date of Analysis: 6/16/16 07:54 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.2	Not Detected	9.9	Not Detected
1,2-Dibromoethane (EDB)	1.2	Not Detected	8.9	Not Detected
Chlorobenzene	1.2	Not Detected	5.3	Not Detected
Ethyl Benzene	1.2	0.62 J	5.0	2.7 J
m,p-Xylene	1.2	1.6	5.0	6.8
o-Xylene	1.2	0.27 J	5.0	1.2 J
Styrene	1.2	4.0	4.9	17
Bromoform	1.2	Not Detected	12	Not Detected
Cumene	1.2	Not Detected	5.7	Not Detected
1,1,2,2-Tetrachloroethane	1.2	Not Detected	8.0	Not Detected
Propylbenzene	1.2	Not Detected	5.7	Not Detected
4-Ethyltoluene	1.2	Not Detected	5.7	Not Detected
1,3,5-Trimethylbenzene	1.2	Not Detected	5.7	Not Detected
1,2,4-Trimethylbenzene	1.2	Not Detected	5.7	Not Detected
1,3-Dichlorobenzene	1.2	Not Detected	7.0	Not Detected
1,4-Dichlorobenzene	1.2	Not Detected	7.0	Not Detected
alpha-Chlorotoluene	1.2	Not Detected	6.0	Not Detected
1,2-Dichlorobenzene	1.2	Not Detected	7.0	Not Detected
1,2,4-Trichlorobenzene	4.6	Not Detected	34	Not Detected
Hexachlorobutadiene	4.6	Not Detected	49	Not Detected
Naphthalene	2.3	Not Detected	12	Not Detected

UJ = Analyte associated with low bias in the CCV.

Surrogates	%Recovery	Method Limits
Toluene-d8	101	70-130
1,2-Dichloroethane-d4	91	70-130
4-Bromofluorobenzene	100	70-130

J0 = Estimated value due to bias in the CCV.

J = Estimated value.

Client Sample ID: B7SS-3(061216) Lab ID#: 1606298B-12A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17061611 2,20	Date of Collection: 6/12/16 5:05:00 F Date of Analysis: 6/16/16 08:20 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1,1	Not Detected	5.4	Not Detected
Freon 114	1.1	Not Detected	7.7	Not Detected
Chloromethane	11	Not Detected UJ	23	Not Detected U.
Vinyl Chloride	1.1	Not Detected	2.8	Not Detected
1,3-Butadiene	1.1	Not Detected	2.4	Not Detected
Bromomethane	11	Not Detected	43	Not Detected
Chloroethane	4.4	Not Detected	12	Not Detected
Freon 11	1:1	1.1	6.2	6.4
Ethanol	4.4	7.8 J0	8.3	15 J0
Freon 113	1.1	Not Detected	8.4	Not Detected
1,1-Dichloroethene	1.1	Not Detected	4.4	Not Detected
Acetone	11	13	26	31
2-Propanol	4.4	6.0	11	15
Carbon Disulfide	4.4	5.9	14	18
3-Chloropropene	4.4	Not Detected	14	Not Detected
Methylene Chloride	11	Not Detected	38	Not Detected
Methyl tert-butyl ether	1.1	Not Detected	4.0	Not Detected
trans-1,2-Dichloroethene	1.1	Not Detected	4.4	Not Detected
Hexane	1.1	Not Detected	3.9	Not Detected
1,1-Dichloroethane	1.1	Not Detected	4.4	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.4	3.0 J	13	8.8 J
cis-1,2-Dichloroethene	1.1	Not Detected	4.4	Not Detected
Tetrahydrofuran	1.1	Not Detected	3.2	Not Detected
Chloroform	1.1	Not Detected	5.4	Not Detected
1,1,1-Trichloroethane	1.1	Not Detected	6.0	Not Detected
Cyclohexane	1.1	Not Detected	3.8	Not Detected
Carbon Tetrachloride	1.1	Not Detected	6.9	Not Detected
2,2,4-Trimethylpentane	1.1	0.17 J	5.1	0.78 J
Benzene	1.1	0.22 J	3.5	0.69 J
1,2-Dichloroethane	1.1	Not Detected	4.4	Not Detected
Heptane	1.1	2.1	4.5	8.5
Trichloroethene	1.1	Not Detected	5.9	Not Detected
1,2-Dichloropropane	1.1	Not Detected	5.1	Not Detected
1,4-Dioxane	4.4	Not Detected	16	Not Detected
Bromodichloromethane	1.1	Not Detected	7.4	Not Detected
cis-1,3-Dichloropropene	1.1	Not Detected	5.0	action letected
4-Methyl-2-pentanone	1.1	Not Detected	4.5	Not Delected
Toluene	1.1	2.1	4.1/.	8/6
trans-1,3-Dichloropropene	1.1	Not Detected	5.0 5	lackinfance and
1,1,2-Trichloroethane	1.1	Not Detected	6.0	Mcnilez/Dete
Tetrachloroethene	1.1	Not Detected	7.5 €	I New Betected
2-Hexanone	4.4	0.32 J	18	1207

Client Sample ID: B7SS-3(061216) Lab ID#: 1606298B-12A

EPA METHOD TO-15 GC/MS FULL SCAN

Dir. Factor.	2.20	Amount	te of Analysis: 6/16/1	6 08:20 PM
Dil. Factor:	2.20	Det	in at Aughoria, 0404	0.00-00 DM
File Name:	17061611	Dat	te of Collection: 6/12	/16 5:05:00 PM
1				

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.1	Not Detected	9.4	Not Detected
1,2-Dibromoethane (EDB)	1.1	Not Detected	8.4	Not Detected
Chlorobenzene	1.1	Not Detected	5.1	Not Detected
Ethyl Benzene	1.1	0.40 J	4.8	1.7 J
m,p-Xylene	1.1	0.83 J	4.8	3.6 J
o-Xylene	1.1	0.29 J	4.8	1.3 J
Styrene	1.1	0.51 J	4.7	2.2 J
Bromoform	1.1	Not Detected	11	Not Detected
Cumene	1.1	Not Detected	5.4	Not Detected
1,1,2,2-Tetrachloroethane	1.1	Not Detected	7.6	Not Detected
Propylbenzene	1,1	Not Detected	5.4	Not Detected
4-Ethyltoluene	1.1	0.16 J	5.4	0.81 J
1,3,5-Trimethylbenzene	1.1	Not Detected	5.4	Not Detected
1,2,4-Trimethylbenzene	1.1	Not Detected	5.4	Not Detected
1,3-Dichlorobenzene	1.1	Not Detected	6.6	Not Detected
1,4-Dichlorobenzene	1.1	Not Detected	6.6	Not Detected
alpha-Chlorotoluene	1.1	Not Detected	5.7	Not Detected
1,2-Dichlorobenzene	1.1	Not Detected	6.6	Not Detected
1,2,4-Trichlorobenzene	4.4	Not Detected	33	Not Detected
Hexachlorobutadiene	4.4	Not Detected	47	Not Detected
Naphthalene	2.2	Not Detected	12	Not Detected

UJ = Analyte associated with low bias in the CCV.

Surrogates	%Recovery	Method Limits
Toluene-d8	101	70-130
1,2-Dichloroethane-d4	92	70-130
4-Bromofluorobenzene	100	70-130

J0 = Estimated value due to bias in the CCV.

J = Estimated value.

Client Sample ID: B7SS-4(061216) Lab ID#: 1606298B-13A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17061612 2.41	Date of Collection: 6/12/16 4:20:00 PM Date of Analysis: 6/16/16 08:47 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1,2	Not Detected	6.0	Not Detected
Freon 114	1.2	Not Detected	8.4	Not Detected
Chloromethane	12	Not Detected UJ	25	Not Detected UJ
Vinyl Chloride	1.2	Not Detected	3.1	Not Detected
1,3-Butadiene	1.2	Not Detected	2.7	Not Detected
Bromomethane	12	Not Detected	47	Not Detected
Chloroethane	4.8	Not Detected	13	Not Detected
Freon 11	1.2	4.1	6.8	23
Ethanol	4.8	22 J0	9.1	40 J0
Freon 113	1.2	Not Detected	9.2	Not Detected
1,1-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Acetone	12	46	29	110
2-Propanol	4.8	2.5 J	12	6.2 J
Carbon Disulfide	4.8	6.6	15	21
3-Chloropropene	4.8	Not Detected	15	Not Detected
Methylene Chloride	12	Not Detected	42	Not Detected
Methyl tert-butyl ether	1.2	Not Detected	4.3	Not Detected
trans-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Hexane	1.2	0.34 J	4.2	1.2 J
1,1-Dichloroethane	1.2	Not Detected	4.9	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.8	3.1 J	14	9.2 J
cis-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Tetrahydrofuran	1.2	Not Detected	3.6	Not Detected
Chloroform	1.2	Not Detected	5.9	Not Detected
1,1,1-Trichloroethane	1.2	Not Detected	6.6	Not Detected
Cyclohexane	1.2	Not Detected	4.1	Not Detected
Carbon Tetrachloride	1.2	Not Detected	7.6	Not Detected
2,2,4-Trimethylpentane Benzene	1.2 1.2	Not Detected Not Detected	5.6 3.8	Not Detected Not Detected
1,2-Dichloroethane	1.2	Not Detected	4.9	Not Detected
Heptane	1.2	2.3	4.9	9.4
Trichloroethene	1.2	Not Detected	6.5	Not Detected
1,2-Dichloropropane	1.2	Not Detected	5.6	Not Detected
1,4-Dioxane	4.8	Not Detected	17	Not Detected
Bromodichloromethane	1.2	Not Detected	8.1	Not Detected
cis-1,3-Dichloropropene	1.2	Not Detected	5.5	Not Detected
4-Methyl-2-pentanone	1.2	0.29 J	4.9	1,2 J
Toluene	1.2	0.35 J	4.5	1.3 J
trans-1,3-Dichloropropene	1.2	Not Detected	5.59	Detected
1,1,2-Trichloroethane	1.2	Not Detected	6.6	No ected
Tetrachloroethene	1.2	Not Detected	TA 2 luc	Infante: Astacted
2-Hexanone	4.8	0.30 J	Son With	ndez 1888

Page 1

Client Sample ID: B7SS-4(061216) Lab ID#: 1606298B-13A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17061612 Date of Collection: 6/12/16 4:20:00 PM
Dil. Factor: 2.41 Date of Analysis: 6/16/16 08:47 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.2	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	1.2	Not Detected	9.2	Not Detected
Chlorobenzene	1.2	Not Detected	5,5	Not Detected
Ethyl Benzene	1.2	Not Detected	5.2	Not Detected
m,p-Xylene	1.2	0.22 J	5.2	0.96 J
o-Xylene	1.2	Not Detected	5.2	Not Detected
Styrene	1.2	0.22 J	5.1	0.96 J
Bromoform	1.2	Not Detected	12	Not Detected
Cumene	1.2	Not Detected	5.9	Not Detected
1,1,2,2-Tetrachloroethane	1.2	Not Detected	8.3	Not Detected
Propylbenzene	1.2	Not Detected	5.9	Not Detected
4-Ethyltoluene	1,2	Not Detected	5.9	Not Detected
1,3,5-Trimethylbenzene	1.2	Not Detected	5.9	Not Detected
1,2,4-Trimethylbenzene	1.2	Not Detected	5.9	Not Detected
1,3-Dichlorobenzene	1.2	Not Detected	7.2	Not Detected
1,4-Dichlorobenzene	1.2	Not Detected	7.2	Not Detected
alpha-Chlorotoluene	1.2	Not Detected	6.2	Not Detected
1,2-Dichlorobenzene	1.2	Not Detected	7.2	Not Detected
1,2,4-Trichlorobenzene	4.8	Not Detected	36	Not Detected
Hexachlorobutadiene	4.8	Not Detected	51	Not Detected
Naphthalene	2.4	Not Detected	13	Not Detected

UJ = Analyte associated with low bias in the CCV.

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	102	70-130	
1,2-Dichloroethane-d4	93	70-130	
4-Bromofluorobenzene	102	70-130	

J0 = Estimated value due to bias in the CCV.

J = Estimated value,

Client Sample ID: B7SS-5(061216) Lab ID#: 1606298B-14A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17061613 2.29	Date of Collection: 6/12/16 11:16:00 AM Date of Analysis: 6/16/16 09:13 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.1	0.31 J	5.7	1.6 J
Freon 114	1.1	Not Detected	8.0	Not Detected
Chloromethane	11	Not Detected UJ	24	Not Detected UJ
Vinyl Chloride	1.1	Not Detected	2.9	Not Detected
1,3-Butadiene	1.1	Not Detected	2.5	Not Detected
Bromomethane	11	Not Detected	44	Not Detected
Chloroethane	4.6	Not Detected	12	Not Detected
Freon 11	1.1	2.9	6.4	16
Ethanol	4.6	Not Detected UJ	8.6	Not Detected UJ
Freon 113	1.1	Not Detected	8.8	Not Detected
1,1-Dichloroethene	1.1	Not Detected	4.5	Not Detected
Acetone	11	8.2 J	27	20 J
2-Propanol	4.6	1.2 J	11	2.8 J
Carbon Disulfide	4.6	0.19 J	14	0.58 J
3-Chloropropene	4.6	Not Detected	14	Not Detected
Methylene Chloride	11	Not Detected	40	Not Detected
Methyl tert-butyl ether	1.1	Not Detected	4.1	Not Detected
trans-1,2-Dichloroethene	1.1	Not Detected	4.5	Not Detected
Hexane	1.1	Not Detected	4.0	Not Detected
1,1-Dichloroethane	1.1	Not Detected	4.6	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.6	2.0 J	14	5.8 J
cis-1,2-Dichloroethene	1.1	Not Detected	4.5	Not Detected
Tetrahydrofuran	1.1	Not Detected	3.4	Not Detected
Chloroform	1.1	Not Detected	5.6	Not Detected
1,1,1-Trichloroethane	1.1	Not Detected	6.2	Not Detected
Cyclohexane	1.1	Not Detected	3.9	Not Detected
Carbon Tetrachloride	1.1	Not Detected	7.2	Not Detected
	1.1	Not Detected	5.3	Not Detected
2,2,4-Trimethylpentane Benzene	1.1	Not Detected	3.6	Not Detected
1,2-Dichloroethane	1.1	Not Detected	4.6	Not Detected
WW.	1.1		4.7	
Heptane Trichloroethene		2.1		8.6
	1.1	Not Detected	6.2	Not Detected
1,2-Dichloropropane	1.1	Not Detected	5.3	Not Detected
1,4-Dioxane	4.6	Not Detected	16 7.7	Not Detected
Bromodichloromethane	1.1	Not Detected	7.7	Not Detected
cis-1,3-Dichloropropene	1.1	Not Detected	5.2	Not Detected
4-Methyl-2-pentanone	1.1	Not Detected	4.7	C. T. T. T. C. C.
Toluene	1.1	1.5	4.3	5.5
trans-1,3-Dichloropropene	1.1	Not Detected	5.2	mullet Palacine
1,1,2-Trichloroethane	1.1	Not Detected	6.2	Mel Detecte
Tetrachloroethene	1.1	Not Detected	7.8	I Not Descrete
2-Hexanone	4.6	0.31 J	19	1.3 1

Client Sample ID: B7SS-5(061216) Lab ID#: 1606298B-14A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17061613 2.29	Date of Collection: 6/12/16 11:16:00 AM Date of Analysis: 6/16/16 09:13 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.1	Not Detected	9.8	Not Detected
1,2-Dibromoethane (EDB)	1.1	Not Detected	8.8	Not Detected
Chlorobenzene	1.1	Not Detected	5.3	Not Detected
Ethyl Benzene	1.1	0.35 J	5.0	1.5 J
m,p-Xylene	1.1	1.5	5.0	6.4
o-Xylene	1.1	0.58 J	5.0	2.5 J
Styrene	1.1	0.40 J	4.9	1.7 J
Bromoform	1.1	Not Detected	12	Not Detected
Cumene	1.1	Not Detected	5.6	Not Detected
1,1,2,2-Tetrachloroethane	1.1	Not Detected	7.9	Not Detected
Propylbenzene	1.1	Not Detected	5.6	Not Detected
4-Ethyltoluene	1.1	0.62 J	5.6	3.0 J
1,3,5-Trimethylbenzene	1.1	Not Detected	5.6	Not Detected
1,2,4-Trimethylbenzene	1.1	0.62 J	5.6	3.1 J
1,3-Dichlorobenzene	1.1	Not Detected	6.9	Not Detected
1,4-Dichlorobenzene	1.1	Not Detected	6.9	Not Detected
alpha-Chlorotoluene	1.1	Not Detected	5.9	Not Detected
1,2-Dichlorobenzene	1.1	Not Detected	6.9	Not Detected
1,2,4-Trichlorobenzene	4.6	Not Detected	34	Not Detected

J = Estimated value.

Naphthalene

Hexachlorobutadiene

UJ = Analyte associated with low bias in the CCV.

Container Type: 1 Liter Summa Canister (100% Certified)

Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	93	70-130
4-Bromofluorobenzene	102	70-130

Not Detected

Not Detected

4.6

2.3

49

12

Méndez

Not Detected

Not Detected

Client Sample ID: B7SS-6(061216) Lab ID#: 1606298B-15A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17061614 Dil. Factor: 2,42		Date of Collection: 6/12/16 5:48:00 PM Date of Analysis: 6/16/16 09:40 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.2	Not Detected	6.0	Not Detected
Freon 114	1.2	Not Detected	8.4	Not Detected
Chloromethane	12	Not Detected UJ	25	Not Detected UJ
Vinyl Chloride	1.2	Not Detected	3.1	Not Detected
1,3-Butadiene	1.2	Not Detected	2.7	Not Detected
Bromomethane	12	Not Detected	47	Not Detected
Chloroethane	4.8	Not Detected	13	Not Detected
Freon 11	1.2	0.33 J	6.8	1,9 J
Ethanol	4.8	Not Detected UJ	9.1	Not Detected UJ
Freon 113	1.2	Not Detected	9.3	Not Detected
1,1-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Acetone	12	25	29	60
2-Propanol	4.8	5.0	12	12
Carbon Disulfide	4.8	6.2	15	19
3-Chloropropene	4.8	Not Detected	15	Not Detected
Methylene Chloride	12	0.40 J	42	1.4 J
Methyl tert-butyl ether	1.2	Not Detected	4.4	Not Detected
trans-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Hexane	1.2	Not Detected	4.3	Not Detected
1,1-Dichloroethane	1.2	Not Detected	4.9	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.8	2.5 J	14	7.5 J
cis-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Tetrahydrofuran	1.2	Not Detected	3.6	Not Detected
Chloroform	1.2	0.94 J	5.9	4.6 J
1,1,1-Trichloroethane	1.2	Not Detected	6.6	Not Detected
Cyclohexane	1.2	Not Detected	4.2	Not Detected
Carbon Tetrachloride	1.2	Not Detected	7.6	Not Detected
2,2,4-Trimethylpentane	1.2	Not Detected	5.6	Not Detected
Benzene	1.2	Not Detected	3.9	Not Detected
1,2-Dichloroethane	1.2	Not Detected	4.9	Not Detected
Heptane	1.2	1.2	5.0	5.0
Trichloroethene	1.2	0.23 J	6.5	1.2 J
1,2-Dichloropropane	1.2	Not Detected	5.6	Not Detected
1,4-Dioxane	4.8	Not Detected	17	Not Detected
Bromodichloromethane	1.2	Not Detected	8.1	Not Detected
cis-1,3-Dichloropropene	1.2	Not Detected		
4-Methyl-2-pentanone	1.2	Not Detected	5.5 190CM	Detected
Toluene	1.2	0.36 J	1 88	3.1
trans-1,3-Dichloropropene	1.2	Not Detected	5.5p fael 1	nfantel ected
1,1,2-Trichloroethane	1.2	Not Detected		dez No elected
Tetrachloroethene	1.2	Not Detected		1888Not Delected
2-Hexanone	4.8	0.33 J	101	/ - /
E-1 IGABIIUNG	4.0	0.33 3	1.30	/SIA

Page 1

Client Sample ID: B7SS-6(061216) Lab ID#: 1606298B-15A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17061614 2.42	Date of Collection: 6/12/16 5:48:00 PM Date of Analysis: 6/16/16 09:40 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.2	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	1.2	Not Detected	9.3	Not Detected
Chlorobenzene	1,2	Not Detected	5.6	Not Detected
Ethyl Benzene	1.2	Not Detected	5.2	Not Detected
m,p-Xylene	1.2	0.30 J	5.2	1.3 J
o-Xylene	1.2	Not Detected	5.2	Not Detected
Styrene	1.2	Not Detected	5.2	Not Detected
Bromoform	1.2	Not Detected	12	Not Detected
Cumene	1.2	Not Detected	5.9	Not Detected
1,1,2,2-Tetrachloroethane	1.2	Not Detected	8.3	Not Detected
Propylbenzene	1.2	Not Detected	5.9	Not Detected
4-Ethyltoluene	1.2	Not Detected	5.9	Not Detected
1,3,5-Trimethylbenzene	1.2	Not Detected	5.9	Not Detected
1,2,4-Trimethylbenzene	1.2	Not Detected	5.9	Not Detected
1,3-Dichlorobenzene	1.2	Not Detected	7.3	Not Detected
1,4-Dichlorobenzene	1,2	Not Detected	7.3	Not Detected
alpha-Chlorotoluene	1.2	Not Detected	6.3	Not Detected
1,2-Dichlorobenzene	1.2	Not Detected	7.3	Not Detected
1,2,4-Trichlorobenzene	4.8	Not Detected	36	Not Detected
Hexachlorobutadiene	4.8	Not Detected	52	Not Detected
Naphthalene	2.4	Not Detected	13	Not Detected

UJ = Analyte associated with low bias in the CCV.

J = Estimated value.

Surrogates	%Recovery	Limits
Toluene-d8	103	70-130
1,2-Dichloroethane-d4	93	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: B15SS-1(061216) Lab ID#: 1606298E-16A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17061607 2.27	Date of Collection: 6/12/16 8:12:0 Date of Analysis: 6/16/16 06:35 P		
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	1.1	Not Detected	5.6	Not Detected
Freon 114	1.1	Not Detected	7.9	Not Detected
Chloromethane	11	Not Detected UJ	23	Not Detected UJ
Vinyl Chloride	1.1	Not Detected	2.9	Not Detected
1,3-Butadiene	1.1	Not Detected	2.5	Not Detected
Bromomethane	11	Not Detected	44	Not Detected
Chloroethane	4.5	Not Detected	12	Not Detected
Freon 11	1.1	Not Detected	6.4	Not Detected
Ethanol	4.5	18 J0	8.6	34 J0
Freon 113	1.1	Not Detected	8.7	Not Detected
1,1-Dichloroethene	1.1	Not Detected	4.5	Not Detected
Acetone	11	130	27	310
2-Propanol	4.5	Not Detected	11	Not Detected
Carbon Disulfide	4.5	4.8	14	15
3-Chloropropene	4.5	Not Detected	14	Not Detected
Methylene Chloride	11	Not Detected	39	Not Detected
Methyl tert-butyl ether	1.1	Not Detected	4.1	Not Detected
trans-1,2-Dichloroethene	1.1	Not Detected	4.5	Not Detected
Hexane	1.1	Not Detected	4.0	Not Detected
1,1-Dichloroethane	1.1	Not Detected	4.6	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.5	7.3	13	22
cis-1,2-Dichloroethene	1.1	Not Detected	4.5	Not Detected
Tetrahydrofuran	1.1	0,66 J	3.3	1.9 J
Chloroform	1.1	Not Detected	5.5	Not Detected
1,1,1-Trichloroethane	1.1	Not Detected	6.2	Not Detected
Cyclohexane	1.1	Not Detected	3.9	Not Detected
Carbon Tetrachloride	1.1	Not Detected	7.1	Not Detected
2,2,4-Trimethylpentane	1.1	Not Detected	5.3	Not Detected
Benzene	1.1	Not Detected	3.6	Not Detected
1,2-Dichloroethane	1.1	Not Detected	4.6	Not Detected
Heptane	1.1	1.3	4.6	5.5
Trichloroethene	1.1	Not Detected	6.1	Not Detected
1,2-Dichloropropane	1.1	Not Detected	5.2	Not Detected
1,4-Dioxane	4.5	0.46 J	16	1.7 J
Bromodichloromethane	1.1	Not Detected	7.6	Not Detected
cis-1,3-Dichloropropene	1.1	Not Detected	5.2	Not Detected
4-Methyl-2-pentanone	1.1	0.47 J	4.6	CONTRACTOR
Toluene	1.1	1.9	4.3	OF MANAGEMENT
trans-1,3-Dichloropropene	1.1	Not Detected	5.2	Not Detected
1,1,2-Trichloroethane	1.1	Not Detected	6.2	P Net Detected
Tetrachloroethene	1.1	Not Detected	7.7	Manage cted
2-Hexanone	4.5	0.53 J	18	IC #21888 /8

Client Sample ID: B15SS-1(061216) Lab ID#: 1606298E-16A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17061607 2.27	Date of Collection: 6/12/16 8:12:00 P Date of Analysis: 6/16/16 06:35 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.1	Not Detected	9.7	Not Detected
1,2-Dibromoethane (EDB)	1.1	Not Detected	8.7	Not Detected
Chlorobenzene	1.1	Not Detected	5.2	Not Detected
Ethyl Benzene	1.1	Not Detected	4.9	Not Detected
m,p-Xylene	1.1	0.36 J	4.9	1.6 J
o-Xylene	1.1	Not Detected	4.9	Not Detected
Styrene	1.1	0.26 J	4.8	1:1 J
Bromoform	1.1	Not Detected	12	Not Detected
Cumene	1.1	Not Detected	5.6	Not Detected
1,1,2,2-Tetrachloroethane	1.1	Not Detected	7.8	Not Detected
Propylbenzene	1.1	Not Detected	5.6	Not Detected
4-Ethyltoluene	1.1	Not Detected	5.6	Not Detected
1,3,5-Trimethylbenzene	1.1	Not Detected	5.6	Not Detected
1,2,4-Trimethylbenzene	1,1	Not Detected	5.6	Not Detected
1,3-Dichlorobenzene	1.1	Not Detected	6.8	Not Detected
1,4-Dichlorobenzene	1.1	Not Detected	6.8	Not Detected
alpha-Chlorotoluene	1.1	Not Detected	5.9	Not Detected
1,2-Dichlorobenzene	1.1	Not Detected	6.8	Not Detected
1,2,4-Trichlorobenzene	4.5	Not Detected	34	Not Detected
Hexachlorobutadiene	4.5	Not Detected	48	Not Detected
Naphthalene	2.3	0.33 J	12	1.7 J

UJ = Analyte associated with low bias in the CCV.

Surrogates	%Recovery	Limits
Toluene-d8	102	70-130
1,2-Dichloroethane-d4	93	70-130
4-Bromofluorobenzene	100	70-130

J0 = Estimated value due to bias in the CCV.

J = Estimated value:

Client Sample ID: B7IA-1(061016) Lab ID#: 1606298D-01A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	10062409 1.61		
Comment		Rpt. Limit	Amount
Compound		(%)	(%)
Methane		0.00016	0.00020

Client Sample ID: B7IA-1D(061016) Lab ID#: 1606298D-02A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:			of Collection: 6/11/16 6:50:00 PM of Analysis: 6/24/16 02:06 PM	
		Rpt. Limit	Amount	
Compound		(%)	(%)	
Methane		0.00017	0,00019	

Client Sample ID: B7IA-2(061016) Lab ID#: 1606298D-03A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	10062411 1.60	Date of Collection: 6/11/16 7:50:00 PM Date of Analysis: 6/24/16 02:29 PM	
Compound		Rpt. Limit (%)	Amount (%)
Methane		0.00016	0.00015 J

J = Estimated value.

Client Sample ID: B7IA-3(061016) Lab ID#: 1606298D-04A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	10062412	Date of Collec	tion: 6/11/16 7:47:00 PM	
Dil. Factor:	1.87	Date of Analy	Date of Analysis: 6/24/16 02:58 PM	
		Rpt. Limit	Amount	
Compound		(%)	(%)	
Methane		0.00019	0.00019	

Client Sample ID: B7IA-4(061016) Lab ID#: 1606298D-05A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	10062413 1.59		
		Rpt. Limit	Amount
Compound		(%)	(%)
Methane		0.00016	0.00020

Client Sample ID: B7IA-5(061016) Lab ID#: 1606298D-06A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:			te of Collection: 6/11/16 7:09:00 PM te of Analysis: 6/24/16 03:45 PM	
		Rpt. Limit	Amount	
Compound		(%)	(%)	
Methane		0.00017	0.00018	

Client Sample ID: B7IA-6(061016) Lab ID#: 1606298D-07A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	10062415 1.53	Date of Collection: 6/11/16 7:37 Date of Analysis: 6/24/16 04:08	
Compound		Rpt. Limit (%)	Amount (%)
Methane		0.00015	0.00016

Client Sample ID: B7AA(061016) Lab ID#: 1606298D-08A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	10062416 1.88	Date of Collection: 6/11/16 6:25: Date of Analysis: 6/24/16 04:31 I	
		Rpt Limit	Amount
Compound		(%)	(%)
Methane	-	0.00019	0.00018 J

J = Estimated value.

Client Sample ID: B7SS-1(061216) Lab ID#: 1606298D-09A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	10062417 2.32	Date of Collection: 6/12/16 12:52 Date of Analysis: 6/24/16 04:55 I	
		Rpt. Limit	Amount
Compound		(%)	(%)
Methane		0.00023	0.00018 J

J = Estimated value:

Client Sample ID: B7SS-1D(061216) Lab ID#: 1606298D-10A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	10062418 2.49	Date of Collection: 6/12/16 12:51:00 Date of Analysis: 6/24/16 05:19 PM	
		Rpt. Limit	Amount
Compound		(%)	(%)
Methane		0.00025	0.00020.1

J = Estimated value.

Client Sample ID: B7SS-2(061216) Lab ID#: 1606298D-11A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	10062419 2.32	Date of Collection: 6/12/16 1:47:0 Date of Analysis: 6/24/16 05:43 P	
		Rpt. Limit	Amount
Compound		(%)	(%)
Methane		0.00023	0.00023

Client Sample ID: B7SS-3(061216) Lab ID#: 1606298D-12A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	10062420 3.00	Date of Collection: 6/12/16 5:05: Date of Analysis: 6/24/16 06:29 F	
6		Rpt. Limit	Amount
Compound		(%)	(%)
Methane		0.00030	0.00020 J

J = Estimated value.

Client Sample ID: B7SS-4(061216) Lab ID#: 1606298D-13A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	10062421 2.41	Date of Collection: 6/12/16 4:20:00 P Date of Analysis: 6/24/16 06:54 PM	
Compound		Rpt. Limit (%)	Amount (%)
Methane		0.00024	0.00018 J

J = Estimated value.

Client Sample ID: B7SS-5(061216) Lab ID#: 1606298D-14A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	10062522 3.02	Date of Collection: 6/12/16 11:1 Date of Analysis: 6/25/16 03:38	
		Rpt. Limit	Amount
Compound		(%)	(%)
Methane		0.00030	0.00025 J

J = Estimated value.

Client Sample ID: B7SS-6(061216) Lab ID#: 1606298D-15A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	10062523 3.22	Date of Collection: 6/12/16 5:48:00 Date of Analysis: 6/25/16 04:04 PM	
		Rpt. Limit	Amount
Compound		(%)	(%)
Methane		0.00032	0.00016 J

J = Estimated value.

Client Sample ID: B15SS-1(061216) Lab ID#: 1606298G-16A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	10061611 2.27	Date of Collection: 6/12/16 8:12:0	
		Rpt. Limit	Amount
Compound		(%)	(%)
Methane		0.00023	Not Detected

4-Bromofluorobenzene

Air Toxics

Client Sample ID: B7IA-1(061016)

Lab ID#: 1606298C-01A

EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14061707 1.61	Date of Collection: 6/11/16 6:50:00 PM Date of Analysis: 6/17/16 03:19 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Methanol	160	Not Detected	210	Not Detected
Container Type: 6 Liter Sun	nma Canister (100% Certifie	d)		Method
Surrogates		%Recovery		Limits
1,2-Dichloroethane-d4		98		70-130

103

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Toluene-d8

Air Toxics

Client Sample ID: B7IA-1D(061016)

Lab ID#: 1606298C-02A

EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14061708 1.67		Date of Collection: 6/11/16 6:50:00 PM Date of Analysis: 6/17/16 03:43 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Methanol	170	Not Detected	220	Not Detected
Container Type: 6 Liter	Summa Canister (100% Certifie	d)		
	·	•		Method
Surrogates		%Recovery		Limits

99

100

103

70-130

70-130

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Toluene-d8

Air Toxics

Client Sample ID: B7IA-2(061016)

Lab ID#: 1606298C-03A

EPA METHOD TO-15 GC/MS

Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
160	Not Detected	210	Not Detected
	(ppbv)	(ppbv) (ppbv) 160 Not Detected	(ppbv) (ppbv) (ug/m3) 160 Not Detected 210

100

99

103

70-130

70-130

Client Sample ID: B7IA-3(061016) Lab ID#: 1606298C-04A

EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14061710 1.87			te of Collection: 6/11/16 7:47:00 PM te of Analysis: 6/17/16 04:37 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Methanol	190	Not Detected	240	Not Detected	

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	97	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	101	70-130

4-Bromofluorobenzene

Air Toxics

Client Sample ID: B7IA-4(061016) Lab ID#: 1606298C-05A

EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14061711 1.59		Date of Collection: 6/11/16 7:19:00 PM Date of Analysis: 6/17/16 05:01 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Methanol	160	Not Detected	210	Not Detected	
Container Type: 6 Liter Sum	ma Canister (100% Certifie	d)			
Surrogates		%Recovery		Method Limits	
1,2-Dichloroethane-d4	· · · · · · · · · · · · · · · · · · ·	100		70-130	
Toluene-d8		99		70-130	

104

Client Sample ID: B7IA-5(061016) Lab ID#: 1606298C-06A

EPA METHOD TO-15 GC/MS

File Name:	14061712	Date of Collection: 6/17/			
Dil. Factor:	1.69	Date of Analysis: 6/17/			
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount	
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Methanol	170	Not Detected	220	Not Detected	

Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	99	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	101	70-130

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Toluene-d8

Air Toxics

Client Sample ID: B7IA-6(061016)

Lab ID#: 1606298C-07A

EPA METHOD TO-15 GC/MS

14061713 1.53	Date of Collection: 6/1 Date of Analysis: 6/17			
Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
150	Not Detected	200	Not Detected	
	Rpt. Limit (ppbv)	Rpt. Limit Amount (ppbv) (ppbv)	Rpt. Limit Amount Rpt. Limit (ppbv) (ppbv) (ug/m3)	

101

100

103

70-130

70-130

Toluene-d8

4-Bromofluorobenzene

Air Toxics

Client Sample ID: B7AA(061016) Lab ID#: 1606298C-08A

EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14061714 1.88		Date of Collection: 6/11/16 6:25:00 P Date of Analysis: 6/17/16 06:08 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Methanol	190	Not Detected	250	Not Detected
Container Type: 6 Liter Su	ımma Canister (100% Certifie	d)		
Surrogates		%Recovery		Method Limits

98

102

70-130

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Toluene-d8

Air Toxics

Client Sample ID: B7SS-1(061216)

Lab ID#: 1606298C-09A

EPA METHOD TO-15 GC/MS

		of Collection: 6/12/16 12:52:00 Pl of Analysis: 6/17/16 06:30 PM	
Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
230	Not Detected	300	Not Detected
	(ppbv)	Rpt. Limit Amount (ppbv) (ppbv)	Rpt. Limit Amount Rpt. Limit (ppbv) (ppbv) (ug/m3)

98

102

106

70-130

70-130

1,2-Dichloroethane-d4

4-Bromofiuorobenzene

Toluene-d8

Air Toxics

Client Sample ID: B7SS-1D(061216)
Lab ID#: 1606298C-10A

EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14061716 2.49		Date of Collection: 6/12/16 12:51:00 Pl Date of Analysis: 6/17/16 06:56 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Methanol	250	Not Detected	330	Not Detected
Container Type: 1 Liter	Summa Canister (100% Certifie	d)		
	·	•		Method
Surrogates		%Recovery		Limits

102

101

102

70-130

70-130

Client Sample ID: B7SS-2(061216)

Lab ID#: 1606298C-11A EPA METHOD TO-15 GC/MS

File Name:	14061717	Date of Collection: 6/12/16 1:47:00 PM
Dil. Factor:	2.32	Date of Analysis: 6/17/16 07:18 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Methanol	230	Not Detected	300	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	100	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	108	70-130

Toluene-d8

4-Bromofluorobenzene

Air Toxics

Client Sample ID: B7SS-3(061216) Lab ID#: 1606298C-12A

EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	Date of Concepton.			6/12/16 5:05:00 PM 6/17/16 07:39 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Methanol	220	Not Detected	290	Not Detected	
Container Type: 1 Liter Sum	ma Canister (100% Certifie	d)			
Surrogates		%Recovery		Method Limits	
1,2-Dichloroethane-d4		100		70-130	

101

105

70-130

Client Sample ID: B7SS-4(061216) Lab ID#: 1606298C-13A

EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14061722 2.41	Date of Collection: 6/12/16 4:20:00 Pt Date of Analysis: 6/17/16 09:16 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Methanol	240	Not Detected	320	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	98	70-130
Toluene-d8	104	70-130
4-Bromofluorobenzene	104	70-130

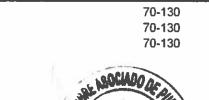
1,2-Dichloroethane-d4

4-Bromofluorobenzene

Toluene-d8

Air Toxics

Client Sample ID: B7SS-5(061216) Lab ID#: 1606298C-14A


EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14061721 2.29	Date of Collection: 6/12/16 11:16:0 Date of Analysis: 6/17/16 08:53 PM		— · -
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Methanol	230	Not Detected	300	Not Detected
	Summa Canister (100% Certifie		300	Not Detec
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,		Method
Surrogates		%Recovery		Limits

98

102

105

Client Sample ID: B7SS-6(061216)

Lab ID#: 1606298C-15A

EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14061720 2.42	Date of Collection: 6/12/16 5:48:00 Date of Analysis: 6/17/16 08:35 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Methanol	240	Not Detected	320	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	100	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	103	70-130

Toluene-d8

4-Bromofluorobenzene

Air Toxics

Client Sample ID: B15SS-1(061216)

Lab ID#: 1606298F-16A

EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14061719 2.26			te of Collection: 6/12/16 8:12:00 PM te of Analysis: 6/17/16 08:16 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Methanol	230	Not Detected	300	Not Detected	
Container Type: 1 Liter Sumi	na Canister (100% Certifie	d)			
Surrogates		%Recovery		Method Limits	
1,2-Dichloroethane-d4	······································	100		70-130	

101

105

70-130

Client Sample ID: B7IA-1 (061016) Lab ID#: 1606272-01A

EPA METHOD TO-17

File Name: Dil. Factor:	6061710 Date of Extraction: NADate of Collection: 6/11/16 6:40:00 1.00 Date of Analysis: 6/17/16 05:19 PM			
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)
Naphthalene	1.0	0.059	2.1	0.12
Air Sample Volume(L): 17.0 Container Type: TO-17 VI Tube				
Surrogates		%Recovery		Method Limits
Naphthalene-d8		100		50-150

Client Sample ID: B7IA-1D (061016)

Lab ID#: 1606272-02A EPA METHOD TO-17

File Name: Dil. Factor:	6061711 Date of Extraction: NADate of Collection: 6/11/16 6:43:00 PM 1.00 Date of Analysis: 6/17/16 05:59 PM			
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)
Naphthalene	1.0	0.060	2.0	0.12
Air Sample Volume(L): 16.6 Container Type: TO-17 VI Tube				
Surrogates		%Recovery		Method Limits
Naphthalene-d8		106		50-150

Client Sample ID: B7IA-2 (061016)

Lab ID#: 1606272-03A EPA METHOD TO-17

Dil. Factor:	1.00	1.00 Date of Analysis: 6/17/16 06:39 P		
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)
Naphthalene	1.0	0.095	1.5	0,14

Container Type: TO-17 VI Tube

Surrogates	%Recovery	Method Limits
Naphthalene-d8	98	50-150

Client Sample ID: B7IA-3 (061016)

Lab ID#: 1606272-04A EPA METHOD TO-17

File Name: Dil. Factor:	6061713 Date o	f Extraction: NADate Date	e of Collection: 6/1/ e of Analysis: 6/17/	100
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)
Naphthalene	1.0	0.063	3.7	0.24

Air Sample Volume(L): 15.8 Container Type: TO-17 VI Tube

Surrogates	%Recovery	Limits
Naphthalene-d8	99	50-150

k.

Client Sample ID: B7IA-4 (061016) Lab ID#: 1606272-05A

EPA METHOD TO-17

File Name: Dil. Factor:	6061714 Date of Extraction: NADate of Collection: 6/11/16 12:20:00 PM 1.00 Date of Analysis: 6/17/16 07:58 PM			
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)
Naphthalene	1.0	0.085	1.0	0.090
Air Sample Volume(L): 11.7 Container Type: TO-17 VI Tube				
Surrogates		%Recovery		Method Limits
Naphthalene-d8		93		50-150

Client Sample ID: B7IA-5 (061016)

Lab ID#: 1606272-06A EPA METHOD TO-17

File Name: Dil. Factor:	6061715 Date of Extraction: NADate of Collection: 6/11/16 7:25:00 PM 1.00 Date of Analysis: 6/17/16 08:38 PM			
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)
Naphthalene	1.0	0.088	3.5	0.31
Air Sample Volume(L): 11.3				
Container Type: TO-17 VI Tube				
				Method
Surrogates		%Recovery		Limits
Naphthalene-d8		98		50-150

Client Sample ID: B7IA-6 (061016)

Lab ID#: 1606272-07A EPA METHOD TO-17

Dil. Factor:	1.00 Date of Analysis: 6/17/16 09			16 09:17 PM
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)
Naphthalene	1.0	0,061	3.8	0.23
Air Sample Volume(L): 16.3 Container Type: TO-17 VI Tube				
Surrogates		%Recovery		Method Limits
Naphthalene-d8		100		50-150

Client Sample ID: B7AA (061016)

Lab ID#: 1606272-08A EPA METHOD TO-17

File Name:	6061717	Date of Extraction: NADate of Collection: 6/11/16 6:25:00 PM
Dil. Factor:	1.00	Date of Analysis: 6/17/16 09:57 PM

Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)
Naphthalene	1.0	0.060	0.52 J	0.032 J

Air Sample Volume(L): 16.6

J = Estimated value.

Container Type: TO-17 VI Tube

		Method
Surrogates	%Recovery	Limits
Naphthalene-d8	91	50-150

Client Sample ID: B7SS-1 (061216)

Lab ID#: 1606272-09A EPA METHOD TO-17

File Name: Dil. Factor:	6061517 Date of 1.00		te of Collection: 6/15/ te of Analysis: 6/15/	
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)
Naphthalene	1.0	2.5	Not Detected	Not Detected
Air Sample Volume(L): 0.400				
Container Type: TO-17 VI Tube				
				Method
Surrogates		%Recovery		Limits
Naphthalene-d8		92		50-150

Client Sample ID: B7SS-1D (061216)

Lab ID#: 1606272-10A EPA METHOD TO-17

File Name: Dil. Factor:	6061518 Date of 1.00		te of Collection: 6/12 te of Analysis: 6/15/	
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)
Naphthalene	1,0	2.5	Not Detected	Not Detected
Air Sample Volume(L): 0.400 Container Type: TO-17 VI Tube				
Surrogates		%Recovery		Method Limits
Naphthalene-d8		98		50-150

Client Sample ID: B7SS-2 (061216)

Lab ID#: 1606272-11A EPA METHOD TO-17

File Name: Dil. Factor:	6061519 Date of 1.00	Extraction: NADate Date	e of Collection: 6/12 of Analysis: 6/15/	
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)
Naphthalene	1.0	2,5	0.49 J	1.2 J
Air Sample Volume(L): 0.400 J = Estimated value.				

Container Type: TO-17 VI Tube

Surrogates	%Recovery	Limits
Naphthalene-d8	97	50-150

Client Sample ID: B7SS-3 (061216)

Lab ID#: 1606272-12A EPA METHOD TO-17

File Name:	6061520 Date of	Extraction: NADat	e of Collection: 6/12	2/16 5:14:00 PM
Dil. Factor:	1.00	Dat	e of Analysis: 6/16/	16 12:19 AM
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)
Naphthalene	1.0	2.5	Not Detected	Not Detected
Air Sample Volume(L): 0.400 Container Type: TO-17 VI Tube				
Surrogates		%Recovery		Method Limits
Naphthalene-d8		102		50-150

Client Sample ID: B7SS-4 (061216)

Lab ID#: 1606272-13A EPA METHOD TO-17

File Name: Dil. Factor:	6061521 Date of 1.00		e of Collection: 6/1/ e of Analysis: 6/16/	
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)
Naphthalene	1.0	2.5	Not Detected	Not Detected
Air Sample Volume(L): 0.400 Container Type: TO-17 VI Tube				
Surrogates		%Recovery		Method Limits
Naphthalene-d8		106		50-150

Client Sample ID: B7SS-5 (061216)

Lab ID#: 1606272-14A

EPA	MET	HOD	TO-17

File Name: Dil. Factor:	6061522 Date o	f Extraction: NADate Date	of Collection: 6/12 of Analysis: 6/16/	· ·
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)
Naphthalene	1.0	2.5	U 08,0	2.0 J
Air Sample Volume(L): 0.400 J = Estimated value. Container Type: TO-17 VI Tube				
Surrogates		%Recovery		Method Limits
Naphthalene-d8		103		50-150

Client Sample ID: B7SS-6 (061216)

Lab ID#: 1606272-15A EPA METHOD TO-17

File Name: Dil. Factor:	6061523 Date of 1.00		te of Collection: 6/1/ te of Analysis: 6/16/	
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)
Naphthalene	1.0	2.5	Not Detected	Not Detected
Air Sample Volume(L): 0.400				
Container Type: TO-17 VI Tube				
				Method
Surrogates		%Recovery		Limits
Naphthalene-d8		96		50-150

Client Sample ID: B15SS-1 (061216)

Lab ID#: 1606272-16A EPA METHOD TO-17

File Name: Dil. Factor:	6061524 Date o		te of Collection: 6/1/ te of Analysis: 6/16/	
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)
Naphthalene	1.0	2,5	Not Detected	Not Detected
Air Sample Volume(L): 0.400 Container Type: TO-17 VI Tube				
Surrogates		%Recovery		Method Limits
Naphthalene-d8		97		50-150

eurofins | Air Toxics

Sample Transportation Notice
Relinquishing sgneture or this document indicates that sample is being shipped in compliance with all applicable local. State, Faderal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing algorature elso indicates agreement to hold harmless, defend, and kindemnity Air Toxics Limited against any claim, demand, or action, of any kind, retaled to the collection, handling, or shipping of samples. D.O.T. Hottine (600) 487-4822

180 BLUE RAVINE ROAD, SUITE B (916) 985-1000 FAX (916) 985-1020 FOLSOM, CA 95630-4719

Q D Page 1 Deptemble Project Manager | CYN / | Ow Collected by Company ठ Address 2 Lab LD. Phone

200								,				.,		,						
					E						***		*			j.				
Lab Use Only Pressurized hy-			riessunzanon Gas:	N ₂ He	Canister Pressure/Vacuum	Receipt	100		I S		1				170					
		Dale .		2021	ter Pres	Final	14	15	rt	5	U	10	ی	ъ	z)	L	,			
Turn Around Time:	KNormal	ush		specify	Canis	Initial	30	100		30	30	30	28	30	္က	20				
Turn	X	O Rush		व	i	sted														
		Project # Building 9 VI	7		,	Analyses Requested	TO-15	TO-15	TO-15	TO-15	TO-15	To-15	TO-15	TO-15	TO-15	To-15	Notes:	}	080	_
Project Info:		## Build	Project Name		Tme	or consciton of Collection	18.35	1850	1950	1441	1919	1909	1937	1825	1252	1251	Ved by: (signature) Date/Time	9		
Project	P.O.				Date	n collection	91/11/9	0/11/16	91/11/0	6/11/16	21/11/0	6/11/16	91/11/9	6/11/16	0/13/16	3/2/16	B) Date/Tim	e) Date/Tim	6-14-16 bate/Time	
	-	are NY Zio ICS			# # # # # # # # # # # # # # # # # # #		611383	Ø3536 6/11/16	00389 6/11/16	0\$354 6/11/16	NØ584 6/1/16	$\overline{}$	944	25249	33632 6/12/16	34581 6/12/16	Hecelved by: (signature) Date/Time	Received by: (signature) Date/Time	Received by: (signature)	
Collected by: (Print and sign)	Company AMAI	Address 2700 Westcheste City Rechange State My Zio 10537	Phone GI4-231-0400 Fax		Lab I.D. (Location)	000	0.14 0.7.2 1. (O.0%)	09th 07:20 (060016)		27 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	174 BJ 1 A-5 (061016)	a di Tan	 		Relibidished by (signature) Detection	13 Jm/6 (700	Recommensure bate/Time Rec	Relinquished by: (signature) Date/Time Rec	

Form 1293 rev.11

606298

None

2

Yes

Work Order #

Custody Seals Intact?

Candition 9000

Temp (°C) હ

AI' BIII #

Shipper Name 77/09

Only Only

Alalla 살

Air Toxics eurofins :

Sample Transportation Notice

all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxice Limited assumes no liability with respect to the collection, handling or shipping of these samples. Retinquishing signature also indicates agreement to hold harmless, defend, and kidemaily Air Toxics Limited against any olaim, demand, or extion, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hottine (800) 467-4922 Relinquishing algnatura on this document indicates that sample is being shipped in compliance with

180 BLUE RAVINE ROAD, SUITE B (916) 985-1000 FAX (916) 985-1020 FOLSOM, CA 95630-4719

Page 2 of 2

Canister Pressure/Vacuum Pressurization Gas: Pressurized by: Receipt Lab Use Only ž Date: Flhaj 3 b رد Turn Around Time: 30 Initial 29 30 8 30 B Normal - Rush **specify** Analyses Requested Notes: H > TO -15 TO-15 TO-15 10-15 TO-15 TO-15 c 900 Project # Billery 1001 of Collection of Collection 3051 1620 1347 1248 7116 2012 Project Info: Fed Ex (TAXAT 765 0601 Project Name Date/Time Date/Time Date/Time P.O. # 6/12/16 6/12/16 6/12/16 2/12/15 6/12/16 91/21/9 Temp (°C) Address 2700 West-chestraly Purchase State NY ZIPO 333 Received by: (signature) Received by: (signature) Received by: (signature) 11,1606 112944 35652 356 77 36539 Nadyo Can # Pull EA 雷 Email Field Sample I.D. (Location) 1200 A Fax 8755-2(061216) 818 SS-1 (061216 B355 - 6 (061216 B755-5(061216) B 755-4 (061216) 8755-3 (061216) Date/Time Date/Time Date/Time BUNG 914-231-0400 Project Manager | Crry Helinquished by: (signature) Relinquished by: (signature) Shipper Name (signature) Collected by: (Print and Sign) Company AM AT Lab I.D. Phone _ 9

妄

Work Order #

Custody Seals Intact?

Condition

None

2

Yes

10000

から

Use Only

TO-17 SAMPLE COLLECTION

Sample Transportation Notice
Refinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnity Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (800), 467-4922.

180 BLUE RAVINE ROAD, SUITE B (916) 985-1000 FAX (916) 985-1020 FOLSOM, CA 95630

ਰੱ Beson 110 Page_ **Turn Around** Ime: Project Info: CHAIN-OF-CUSTODY RECORD lerry Collected by: (Print and Sign). Project Manager ___

Company AN AI O	i i		#' #'0:				Normal	Ġ.	O ppmvi		
Address 2300 West hes bolty Purhase	C.S.e. State NY	47 Zip 10877		Project # Brilding 7 VI	14 YE	_	O Rush	8	ygdol V		
Phone 914-251-0406 Fex				Project Name		1	SDACIÍV			'n	
Lab I.D. Field Sample I.D. (Location)	Engraved or Stamped	Date of Collection	Start Time (hr:min)	End Time (hr:min)	Pre-Test Flow Rate	Post-Test	Volume	Indoor/Outdoor	ultdoor	door Air A 100btu	odsV lic ther (
1014 B71A-1 (061016)	150557	(V/1/9)	0781	1540	2.C	7.6	× c	ج ر ج	d c		
MOSPE B71 A-10 (061016)	143596	91/11/9	1848	1843	3.5	35.	<u>و</u> او	3.2			
	145511	91/11/9	1950	1401	35	36	10.5	ź		0	8
	184631	91/11/9	1947	1947	36	30	30	-		D 123	吕
105/m B75A-4(061016)	184191	21/11/2	1920	1220	34	38	4:	17	1		8
1664 BAIR - 5 (061016)	143322	91/119	1915	1925	35	70	11.3	+		<u>23</u>	8
074 (STIA-6 (061016)	143760	91/11/9	1936	1936	34	34	5 3	-		0	
(6) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0	147216	6/11/16	1825	1825	3.4	35	٦٥.		1	R	8
										0	
- 1										0	
Helinguished by Glignature) — Date/Time 1700			re) Date/Time	(signature) Date/Time		38:	=	_	(_	
Refinquished by: (signature) Date/Time	Raceive	D	re) Date/Time	اه اوراط (راه	٩	10-17 haphthalene Unly	WY C	ુ (ક્રિમુહ	Š	>	
Relinquished by: (signature) Date/Time	Received	. (s)	Address Date/Time		0000						
				Condition		Chelon/Seals in acco	lac (2)		*Work Orber#		
ONE COLOR		3,48	ब्र	Good		Yes No	None	16	1606272	7.2	

TO-17 SAMPLE COLLECTION

CHAIN-OF-CUSTODY RECORD

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hottine (800) 467-4922.

幽 (916) 985-1000 FAX (916) 985-1020 a 180 BLUE RAVINE ROAD, SUITE FOLSOM, CA 95630 ৰে Page.

ŏ

) 19rhiO Soil Vapor 囚 X X 図 B 丒 Ø Dutdoor Air Ó **3** TiA roobal Clmg/m3 News/m3 Indoor/Outdoor Termp O pomy 85 Vedog 7 8 b T % RH 日の S O 4 かり 200 **Furn Around** 400 7007 400 Volume KNormal 202 9 2007 500 Time: specify 9 C Rush ٤ Flow Rate Post-Test m)/mih 3 33 43 13 13 5 ~ (1) M 3 Notes: Flow Rate 133 > 133 3 33 33 M 13 5 3 4 ¢ 000 Project # Stileins CK# 7765 0601 End Time (hr:min) 1303 1625 1352 1120 1258 1914 175 201 Project Name, Project Info: Date/Time Date/Time Date/Time PO.# Start Time (hr:min) 1300 1750 1349 2014 1255 171 State NY Zip 10533 Received by: (signature) (signatura) Received by: (signature) 91/21/9 6/12/16 6/12/16 (mm/dd/yy) 6/12/16 6/12/16 Collection 91/21/9 Date of 12/9 6/12 Received by: (or Stamped 143423 Engraved 147226 148999 143671 153666 153605 47666 141302 Tube # 1700 Email City Pachese Ä Field Sample I.D. (Location) B755-10(06,216) B755-2 (061216) 3Jon 16 B1555-1 (061216 Date/Time Date/Time Date/Time B755-4(061216) B355-1 (061216) 6755-3(061216) B755-6(061216 B755-5(061216) Phone 914-251-0400 Address 2700 West hester Project Manager Levry Relinquished by: (signature) quished by: (signature) Rélinquished by: (signature) Collected by: (Print and Sign). Company AM AI 13 4 किंद्र Lab I.D. 00 ORIGINA PILIPA P Relin

೬೦೬೩₹೩

None)

ŝ

Yes

2100

77

以 5

Quatody Seals Inface?

		_1606298A/1606298B/1606298E
	Date:	_06/11-12/2016
REVIEW OF Varieties of the following guidelines for evaluating voluctions. This document will assist the revidecision and in better serving the needs of the JSEPA data validation guidance docume Compendium Method TO-15. Determination Specially-Prepared Canisters and Analyz January, 1999"; USEPA Hazardous Wast Analysis of Ambient Air in Canisters by Met QC criteria and data validation actions listed document, unless otherwise noted. The hardcopied (laboratory name) _Eurofins eviewed and the quality control and perform	iewer in using profe the data users. The s ents in the following on of Volatile Organ red By Gas Chron e Support Branch. hod TO-15, (SOP # d on the data review sAir_Toxics	e created to delineate required validation ssional judgment to make more informed sample results were assessed according to order of precedence: QC criteria from ic Compounds (VOCs) In Air Collected Innatography/Mass Spectrometry (GC/MS) Validating Air Samples. Volatile Organic HW-31. Revision #4. October, 2006). The worksheets are from the primary guidance data package received has been
.ab. Project/SDG No.:1606298A/1606 No. of Samples:17 Trip blank No.: Tield blank No.:		_
Equipment blank No.: Field duplicate No.:1606298A-01A/16	506208A 02A+ 160	62084 004/16062084 104
X Data CompletenessX Holding TimesX GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesN/A_ Matrix Spike/Matrix Spike Dupli Dverall Comments:_VOCs_by_method_	cate	X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits
Definition of Qualifiers: I- Estimated results J- Compound not detected R- Rejected data JJ- Estimated nondetect		
Reviewer:Rafuel Dufa	aut-	Date: 07/11/2016

DATA REVIEW WORKSHEETS

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
	1	. X ?
		0.000 0.000 0.000
		<u></u>
		1
		-

All criteria were met _	_X	_
Criteria were not met		
and/or see below		

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
*				
All samples ana	lyzed within the recomm	nended method holding	g time.	
			+	
			-	
			+	
			+	13
72				

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles.

Soil samples- 7 days from sample collection.

Cooler temperature (Criteria: 4 ± 2 °C): N/A – summa canisters

Actions

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

All criteria were met _X
Criteria were not met see below

GC/MS TUNING

The assessment of standard tuning QC		determine if the sample instrume	entation is within the
_X The BFB p	erformance results were	reviewed and found to be within the	e specified criteria.
_X BFB tuning	was performed for every	y 24 hours of sample analysis.	
lf no, use profession		nine whether the associated data s	should be accepted,
List	the	samples	affected:

If mass calibration is in error, all associated data are rejected.

All criteria were met _X_	
Criteria were not met	
and/or see below	

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	06/13/16	Date of initial calibration:	_04/12/16
Dates of continuing calibration	n:06/15/16	Dates of continuing calibration:	06/16/16
Instrument ID numbers:N	/ISD-20	Instrument ID numbers:MS	SD-17
Matrix/Level:	_Air/low	Matrix/Level:/	Air/low

DATE	LAB FILE ID#	CRITERIA OUT	COMPOUND	SAMPLES AFFECTED
		RFs, %RSD, <u>%D</u> , r		·
Initial and o	continuing calibration	on met the method per	formance criteria ex	cept the cases described in
this docum		·	-	•
MSD-17				
06/16/16	1606298E-18A	31 %	Chloromethane	1606298B-09A to -15A;
00/10/10	1000E00E 10/1	0.70		

Note: Results qualified as estimated (J) or (UJ) in affected samples.

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be \leq 30 % with < 2 analytes \leq 40 % regardless of method requirements for CCC.

All %Ds must be < 30% regardless of method requirements for CCC.

Method TO-15 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 30%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were met
Criteria were not met
and/or see belowX

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE Analyzed	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION/ UNITS
	for_blanks			pove_the_reporting_limit/
Note:	Several analyt	es detected in action level. La	the method blank ana	lyzed on 06/15/16 below the results as estimated (J). No
Summa_c	anisters_met_cl	eaning_certifica	ation_criteria	
Field/Equipmer	nt/Trip blank			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
No_field/trip/eq	uipment_blanks	_analyzed_with	this_data_package	

All criteria were met _X
Criteria were not met
and/or see below

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene)

ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
					-
-					
	4				
Ti-	~				

All criteria were met _X
Criteria were not met
and/or see below

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

SAMPLE ID

SURROGATE COMPOUND

d8

ACTION

1,2-DICHLOROETHANEd4 Toluene- 4-i

4-BFB

_Surrogate_recoveries_within_laboratory_control_limits					
		_			
		_			
QC Limits* (Air)					
LL_to_UL70to_130	_70to_13070to_130				

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

Actions:

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	J	J	J
Nondetects results	R	UJ	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%.

If any one surrogate in a fraction shows < 10 % recovery.

All criteria were met
Criteria were not met
and/or see belowN/A

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION
MS/MSD_ accuracy_	are_not_required_as	_part_of_l	Method_	TO-15;_blank_spi	ke_used_to_assess

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were met
Critena were not met
and/or see belowN/A

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD - Unspiked Compounds

It should be noted that Method TO-15 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

Sample ID:	77		Matrix/Le	vel/Unit:	
COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.	% RSD	ACTION
				100	
			-	100	
	75 776 F				18_866
			ş — — — — — — — — — — — — — — — — — — —	<u> </u>	
				_	
-					
5,00					

Actions:

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were met _X
Criteria were not met
and/or see below

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

LCS ID

COMPOUND

% R

QC LIMIT

CS/LCSD_%_recoveries_and_RPD_within_laboratory escribed_in_this_document	/_control_limits_excep	t_in_the_cases
1606298A-11A/11AABromomethane	133/132_%	70130
Note: No action taken. Analytes not-detected in	in sample, non-detects	are accepted.
LCS ID COMPOUND	% R	QC LIMIT
1606298A-19A/19AAChloromomethane	65/69_%	70130_
1606298A-18A/18AA1,3-butadiene	69 %	70130_
Ehanol	63/62_%	
Acetone	69_%	70130_
Carbon disulfide	66/68 %	70130_
Tetrahydrofuran	69 %	70130_

Note: No action taken, professional judgment. % recoveries within generally acceptable control limits.

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

DATA REVIEW WORKSHEETS

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? Yes or No.

If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

				All criteria were metX Criteria were not met and/or see below		
IX.	LABORATOR	>	. K.,			
	Sample IDs: Sample IDs:	LCS/LCSD_(06/16/2016) 1606298A-01A/-01AA		Matrix:Air Matrix:Air		

Laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information. Suggested criteria: RPD \pm 25% for air samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	I	DUPLICATE CONC.	RPD	ACTION	
RPD within laboratory and generally acceptable control limits.						
			ļ			

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were n Criteria were n and/or see bel	ot met
Matrix:	Air

Air

Matrix:___

IX. FIELD DUPLICATE PRECISION

Sample IDs: __1606298A-01A/-02A_____ Sample IDs: __1606298A-09A/-10A

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

Suggested criteria: RPD ± 25% for air samples. If both samples and duplicate are < 5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
1606298A-01A/-02	2A	-		•	
Ethanol	0.80	8.0 5.8 32 % Qualify		Qualify results in	
Acetone	0.80	14	6.2	77 %	sample and duplicate
		its in sample			control limits for analytes ne cases described in this
				-T-	

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

Actions:

All criteria were met)	\subseteq
Criteria were not met	
and/or see below	

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +40% or -40% of the IS area in the associated calibration standard.
- * Retention time (RT) within ± 0.06 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION
	tandard_area_and_reration_standards				_both_samples
	25.00				
			315		

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -40%	IS AREA > + 40%
Positive results	J	ل
Nondetected results	R	ACCEPT

If a IS retention time varies more than 0.330 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were met _	X_	
Criteria were not met		
and/or see below	_	

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

1606298A-01A

Freon

RF = 3.85861

[] = (25001)(5.0)/(107202)(3.85861)

= 0.30 ppbv OK

All criteria were metX
Criteria were not met
and/or see below

XII.	OH	ANT	TAT	ION	HH	MITS
/\II.	O(U)	13 W L	18/31	IUII		

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASONS FOR DILUTION
All samples we	re diluted by a factor of <	2.48 x.
		工程
		gentle and the second
	TESTS IN	
(a. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15		

B.	Percent	Solids
ш.		Oulua

List samples which	have ≤ 50 % solids	S		
			 	1000 N
			 100	
		The state of		
Tanada and a second				

Actions:

If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ)

If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R)

Project Number:_1606298C/1606298 Date:06/11-12/2016	
REVIEW OF VOLATILE ORGANIC PACKAGE The following guidelines for evaluating volatile organics were created to delineate required validations. This document will assist the reviewer in using professional judgment to make more information and in better serving the needs of the data users. The sample results were assessed according USEPA data validation guidance documents in the following order of precedence: QC criteria "Compendium Method TO-15. Determination of Volatile Organic Compounds (VOCs) In Air Collecte Specially-Prepared Canisters and Analyzed By Gas Chromatography/Mass Spectrometry (GC//January, 1999"; USEPA Hazardous Waste Support Branch. Validating Air Samples. Volatile Organic Analysis of Ambient Air in Canisters by Method TO-15, (SOP # HW-31. Revision #4. October, 2006). QC criteria and data validation actions listed on the data review worksheets are from the primary guidadocument, unless otherwise noted. The hardcopied (laboratory name) _EurofinsAir_Toxics	med ing to from ind In MS), panic The ance
Lab. Project/SDG No.:1606298C/1606298F Sample matrix:Air No. of Samples:16	
Trip blank No.:	
X Data CompletenessX Laboratory Control SpikesX Holding TimesX Field DuplicatesX GC/MS TuningX CalibrationsX Internal Standard PerformanceX Compound IdentificationsX BlanksX Compound QuantitationX Surrogate RecoveriesX Quantitation LimitsN/A_ Matrix Spike/Matrix Spike Duplicate	
Overall Comments:Methanol_by_method_TO-15	
Definition of Qualifiers: J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondetect	
Reviewer: Rafael Infant	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
-0_		
1		
	1	

All criteria were met_	_X
Criteria were not mel	
and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	рН	ACTION
All samples analy	zed within the recomi	mended method holding	g time. A	Il summa canisters received
				le B7IA-1D(061016) did not
	on the sample tag with ess and report the san		fication.	The information on the COC
was used to proc	ess and report the sail	npic.		
<u> </u>			+	

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles. Soil samples- 7 days from sample collection.

Cooler temperature (Criteria: 4 + 2 °C): N/A - summa canisters

Actions

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

	All	criteria	were	met_	_X
Criteria	were	not met	see	below	

GC/	NS.	TU	ΝI	NG

The assessment standard tuning Q	•	determine if the sample instrume	entation is within the
_XThe BFB	performance results were i	reviewed and found to be within the	e specified criteria.
_XBFB tunir	ng was performed for every	24 hours of sample analysis.	
If no, use profess qualified or rejecte		ine whether the associated data	should be accepted,
List	the	samples	affected:
If mass calibration	n is in error, all associated o	data are rejected.	

All criteria were met _	Х_	_
Criteria were not met		
and/or see below		

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	06/17/2016
Dates of continuing calibration:	06/17/2016
Instrument ID numbers:MS	SD-14
Matrix/Level:/	Air/low

DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
	1.5.		711 0, 701100, 700,11		74120125
			l and continuing calibrates and cal		pecific requirements. Initial
			}		
	+			1	
	1				

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be ≤ 15 % regardless of method requirements for CCC.

All %Ds must be \leq 30% regardless of method requirements for CCC.

Method TO-15 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were met _	X_
Criteria were not mel	
and/or see below	

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
All_method		<i>III</i>		
Field <u>/</u> Equipmen				
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
No_field/trip/equ	uipment_blanks	_analyzed_with	n_this_data_package	
	•			
		1947 17A		

All criteria were met _	_X_	
Criteria were not mel		
and/or see below	_	

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene)

ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
					United States
				-5	
				1	
		- Sal			
	-ct				
and American					
1000	,				

All criteria were met _	_X
Cntena were not met	
and/or see below	

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

SAMPLE ID	SURROG	ATE COMPO	UND	ACTION
	1,2-DICHLOROETHANE- d4	Toluene- d8	4-BFB	
_Surrogate_rec	overies_within_laboratory_contro	ol_limits		
QC Limits* (Air)				

* QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.

_LL_to_UL___70__to_130______70__to_130____70__to_130___

* If QC limits are not available, use limits of 80 - 120 % for aqueous and 70 - 130 % for solid samples.

Actions:

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	J	J	J
Nondetects results	R	UJ	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%.

If any one surrogate in a fraction shows < 10 % recovery.

All criteria were met
Criteria were not met
and/or see below N/A

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria. Sample ID: Matrix/Level:					
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION
	_are_not_required_as	-		75.72	oike_used_to_assess

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	j
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

^{*} QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.

^{*} If QC limits are not available, use limits of 70 – 130 %.

All criteria were met _____ Criteria were not met and/or see below __N/A__

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD - Unspiked Compounds

It should be noted that Method TO-15 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

Sample ID:			Matrix/Le	vel/Unit:	
COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.	% RSD	ACTION
				- E- C -	
	450				
150(2)					

Actions:

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were met _X_	
Criteria were not met	
and/or see below	

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

	LCS ID	COMPOUND	% R	QC LIMH
No_LCS/	LCSD_(Blank_s	spike)_analyzed_in_this_da	ata_package	

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? Yes or <u>No</u>. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

		All criteria were metX Criteria were not met and/or see below
IX.	LABORATORY DUPLICATE PRECISION	
	Sample IDs:1606298C-01A/02A Sample IDs:1606298C-09A/10A	Matrix:Air Matrix:Air

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

Suggested criteria: RPD ± 25% for air samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

		w
 ackage. RPD control limits	atory and ge	nerally acceptable

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were met _	х_
Criteria were not met	
and/or see below	-

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +40% or -40% of the IS area in the associated calibration standard.
- * Retention time (RT) within ± 0.06 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION
	tandard_area_and_reration_standards				both_samples
Actions:					

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -40%	is AREA > + 40%
Positive results	J	J
Nondetected results	R	ACCEPT

2. If a IS retention time varies more than 0.330 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were met __X__ Criteria were not met and/or see below ____

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

1606298C-01A

4-Bromofluorobenzene

RF = 0.493

[] = (244049)(400)/(479638)(0.493)

= 413 ppbv OK

All criteria were met _X	
Criteria were not met	
and/or see below	

XII.	OU	ITINA	TAT	ION I	TIME	rs

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASONS FOR DILUTION
All samples dil	luted by a factor of less th	nan 2.48.
, ,		
	Village and American Control of the	
15 See		

	.	 	15
	 	Section 2	

Actions:

If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ) If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R)

	Project Number:	1606298D/1606298G
	-	06/11-12/2016
REVIEW OF VOLATION The following guidelines for evaluating volatile of actions. This document will assist the reviewer in decision and in better serving the needs of the data USEPA data validation guidance documents in the D-1946 method for measuring permanent gases samples using gas chromatography (GC) and a the detection (FID). Validating Air Samples. Volatile CTO-15, (SOP # HW-31. Revision #4. October, 2006 the data review worksheets are from the primary guidant the hardcopied (laboratory name) _Eurofinsreviewed and the quality control and performance displays the same property of the data review worksheets are from the primary guidant performance displays the data review worksheets are from the primary guidant performance displays the data review worksheets are from the primary guidant performance displays the data review worksheets are from the primary guidant performance displays the data review worksheets are from the primary guidant performance displays the data review worksheets are from the primary guidant performance displays the data review worksheets are from the primary guidant performance displays the data review worksheets are from the primary guidant performance displays the data review worksheets are from the primary guidant performance displays the data review worksheets are from the primary guidant performance displays the data review worksheets are from the primary guidant performance displays the data review worksheets are from the primary guidant performance displays the data review worksheets are from the primary guidant performance displays the data review worksheets are from the primary guidant performance displays the data review worksheets are from the primary guidant performance displays the data review worksheets are from the primary guidant performance displays the data review worksheets are from the primary guidant performance displays the data review worksheets are from the primary guidant performance displays the data review worksheet performance displays the data review wo	organics were created or using professional just a users. The sample restricted following order of present and light hydrocarbor armal conductivity detectorganic Analysis of Amalysis of	to delineate required validation adgment to make more informed sults were assessed according to cedence: QC criteria from ASTM as in refinery and other sources ctor (TCD) and/or flame ionization abient Air in Canisters by Method d data validation actions listed on as otherwise noted.
Lab. Project/SDG No.:1606298D/1606298G No. of Samples:16	Sa	ample matrix:Air
Trip blank No.: Field blank No.: Equipment blank No.: Field duplicate No.:1606298D-01A/160629		
X Data CompletenessX Holding TimesN/A_ GC/MS TuningN/A_ Internal Standard PerformanceX BlanksN/A_ Surrogate RecoveriesN/A_ Matrix Spike/Matrix Spike Duplicate Overall Comments:_Methane_by_ASTM_methol	XF	aboratory Control Spikes Field Duplicates Calibrations Compound Identifications Compound Quantitation Quantitation Limits
Definition of Qualifiers: J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondetect		4.3
Reviewer:_ Rafael Infant	<i></i> Da	ite: 07/11/2016

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
1		
		1000 F3 - F (* 1550 - 1651 - 1
	1	
		-1

All criteria were met _	X_	
Criteria were not met		
and/or see below		

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
			1	
All comples one	lumad within the conserva-		- 4: 41	
All samples and	ilyzed within the recomi	menaea methoa nolain	g ome. Al	I summa canisters received
in good conditio	ns. The Chain of Cust	ody (COC) information	for samp	le B7IA-1D(061016) did not
			fication.	The information on the COC
was used to pro-	cess and report the san	nple.		
		·		
			+	
			+	
				
	1		1	

Criteria

Aqueous samples - 14 days from sample collection for preserved samples (pH < 2, 4°C), no air bubbles.

Aqueous samples - 7 days from sample collection for unpreserved samples. 4°C, no air bubbles. Soil samples- 7 days from sample collection.

Cooler temperature (Criteria: 4 ± 2 °C): N/A – summa canisters

Actions

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R). If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ) If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R). If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and

nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

		Criteri	a were not met see below
GC/MS TUNING			
The assessment of the control of the		determine if the sample instrum	entation is within the
N/A The BFB	performance results were	reviewed and found to be within the	ne specified criteria.
N/A BFB tunin	g was performed for every	24 hours of sample analysis.	
f no, use profess qualified or rejecte		ine whether the associated data	should be accepted,
ist	the	samples	affected:

If mass calibration is in error, all associated data are rejected. $% \label{eq:calibration} % \label{eq:calibration} %$

Note: Samples analyzed using GC with either TCD or FID detection.

All criteria were met _	X
Criteria were not mel	
and/or see below	

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	_01/15/16	
Dates of continuing calibration:	06/16/16;_0	6/24/24
Instrument ID numbers:	_GC-10	
Matrix/Level:	_Air/low	

DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
			rations meet method s requirements.	pecific requirements. I	nitial calibration retention
		· ·			

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be < 15 % regardless of method requirements for CCC.

All %Ds must be ≤ 30% regardless of method requirements for CCC.

Method TO-15 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were met _	_X
Criteria were not mel	
and/or see below	- 13

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
All_method	-		fic_criteria	
Field/Equipment				
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_field/trip/eq	uipment_blank	s_analyzed_wi	th_this_data_package	

All criteria were melX
Criteria were not met
and/or see below

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene)

ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
					no. 50
				-0	
				100	
			3	1	
-		-4 (1)			
			· · · · · · · · · · · · · · · · · · ·	 	
	- F				
base of		-			

All criteria were met _	N/A
Criteria were not met	
and/or see below	

ACTION

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

SURROGATE COMPOUND

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

_Surrogate_standard	s_not_requir 	red_by_the_me	thod		30	
QC Limits* (Air) LL_to_UL	to	to	to	to		

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

Actions:

SAMPLE ID

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	J	J	J
Nondetects results	R	UJ	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%.

If any one surrogate in a fraction shows < 10 % recovery.

All criteria were met	
Criteria were not met	
and/or see belowN/A	

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:		Matrix/Level:			_	
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION	
	not_required_as_part			I_D-1946;_blank	_spike_used_to_as	sess_

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.

^{*} If QC limits are not available, use limits of 70 – 130 %.

All criteria were met _____ Criteria were not met and/or see below __N/A___

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD - Unspiked Compounds

It should be noted that Method TO-15 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

Sample ID:			Matrix/Le	vel/Unit	
COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.	% RSD	ACTION
			E 25 45		
				THE STATE OF THE S	
			-		
				7.0	
	2000				
The state of the s					

Actions:

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were met _	_X_	
Criteria were not met		
and/or see below		

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

	LCS ID	COMPOUND	% R	QC LIMIT
LCS/LC	SD_(Blank_spik	ce)_analyzed_in_this_data_	_package;_recoveries_	and_RPD
within_la	aboratory_contro	ol_limits		
		9725		

- QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper
- If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? Yes or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

	4	All criteria were metX Criteria were not met and/or see below
IX.	FIELD/LABORATORY DUPLICATE PRECISION	
	Sample ID_LCS/LCSD_(laboratory_duplicate) Sample ID_1606298D-01A/02A_(field_duplicate)_ Sample ID_1606298D-09A/10A_(field_duplicate)_	Matrix:Air Matrix:Air Matrix:Air

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

Suggested criteria: RPD <u>+</u> 25% for air samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
RPD for laboratory	duplicate (LCS/LCSD)	and field duplica	ites with	in laboratory control limits.

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were met_	_N/A
Criteria were not met	
and/or see below	-

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +40% or -40% of the IS area in the associated calibration standard.
- * Retention time (RT) within \pm 0.06 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	18 001	IS AREA	RANGE ACTION	
	tandard_not_required			antified_by_external_standard_	_
					_
					_
Actions:					

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -40%	IS AREA > + 40%
Positive results	J	J
Nondetected results	R	ACCEPT

2. If a IS retention time varies more than 0.330 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were met _X_
Criteria were not met
and/or see below

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

1606298D-01A

Methane

RF = 226379851

[] = (28128)/(226379851)

= 0.000124 % OK

All criteria were metX
Criteria were not met
and/or see below

XII. QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASONS FOR DILUTION
All samples dili	uted by a factor of less th	an 3.22
	The same of the sa	
	The state of the s	
15000		
in the second		

D. I GIUGIIL OUIUS	B.	Percent	Solids
--------------------	----	---------	--------

List samples	which have ≤	50 % solids				
					10003	H.
			pi opisi			

Actions:

If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ)

If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R) $\,$

	Project Number:16062/2
	Date:05/14-16/2016
REVIEW OF VOLATILE ORGANIC The following guidelines for evaluating volatile organics were of actions. This document will assist the reviewer in using profess decision and in better serving the needs of the data users. The sai USEPA data validation guidance documents in the following of "Compendium Method TO-15. Determination of Volatile Organic Specially-Prepared Canisters and Analyzed By Gas Chromat January, 1999"; USEPA Hazardous Waste Support Branch. Va Analysis of Ambient Air in Canisters by Method TO-15, (SOP # HV QC criteria and data validation actions listed on the data review we document, unless otherwise noted. The hardcopied (laboratory name) _EurofinsAir_Toxicsreviewed and the quality control and performance data summarized	created to delineate required validation ional judgment to make more informed mple results were assessed according to order of precedence: QC criteria from Compounds (VOCs) In Air Collected Intography/Mass Spectrometry (GC/MS) alidating Air Samples. Volatile Organic W-31. Revision #4. October, 2006). The orksheets are from the primary guidance data package received has been
Lab. Project/SDG No.:1606272 No. of Samples:16	Sample matrix:Air
X Holding TimesX GC/MS TuningX Internal Standard PerformanceX Blanks	
Overall Comments:Naphthalene_by_method_TO-17_	
Definition of Qualifiers: J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondetect Reviewer: Reviewer:	
	
Date: 07/11/2016	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
1		
		<i>*</i>
		1

All criteria were met _	х_	
Criteria were not met		
and/or see below	-	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
			-	
All samples ana	lyzed within the recor	nmended method holdir	ng time.	Samples received in good
conditions and no	o receiving discrepanc	ies were observed.	 	1
			-	
			<u> </u>	

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles. Soil samples- 7 days from sample collection.

Cooler temperature (Criteria: 4 ± 2 °C): 3.4°C

Actions

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R). If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ) If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R). If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

List

All criteria were metX Criteria were not met see below
GC/MS TUNING
The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits
XThe BFB performance results were reviewed and found to be within the specified criteria.
XBFB tuning was performed for every 24 hours of sample analysis.
If no, use professional judgment to determine whether the associated data should be accepted, qualified or rejected.

affected:

samples

If mass calibration is in error, all associated data are rejected.

the

All criteria were met _	_X
Criteria were not mel	
and/or see below	-

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	06/14-15/16
Dates of continuing calibration:_	_06/15/16;_06/17/16
Instrument ID numbers:	_MSD-6
Matrix/Level:	Air/low

DATE	LAB	FILE	CRITERIA OUT	COMPOUND	SAMPLES
	ID#		RFs, %RSD, %D, r		AFFECTED
times med	et method	specific			tial calibration retention on for Naphthalene 99.7
and 99.9 5	%: meet л	iemoa s	Decine reconcentents.		
and 99.9 9	%; meet n	lethod s	pecinic requirements.		
and 99.9 %	%; meet n	neurou s	pecine requirements.		
and 99.9	%; meet n	lethod s	pecinic requirements.		

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be \leq 15 % regardless of method requirements for CCC.

All %Ds must be ≤ 30% regardless of method requirements for CCC.

Method TO-15 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were met _	_X_	_
Criteria were not met		
and/or see below		

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
All_method	l_blank_meeth	_method_speci	fic_criteria	
Field/Equipment	/Trip blank			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
	- 10 T			
				222.0

All criteria were met _	X
Criteria were not met	
and/or see below	2.0

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene)

ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is \leq sample quantitation limit (SQL) and \leq AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
					Hippon
					and the
				1	
		And			
	100				
,					
View Control					

All criteria were met _X
Criteria were not met
and/or see below

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

SA	MP	LE	ID

SURROGATE COMPOUND

ACTION

1,2-DICHLOROETHANE- Toluene- 4-BFB d8

_Surrogate_recoveries_within_laboratory_control_limits				
QC Limits* (Air)				
LL_to_ULto	tototo			

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

Actions:

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	J	J	J
Nondetects results	R	UJ	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%.

If any one surrogate in a fraction shows < 10 % recovery.

All criteria were met
Criteria were not mel
and/or see belowN/A

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds with Sample ID:			not meet the criteria. Matrix/Level:		
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION
	are_not_required_as			•	

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

^{*} QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.

^{*} If QC limits are not available, use limits of 70 – 130 %.

All criteria were mel
Criteria were not met
and/or see belowN/A

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD – Unspiked Compounds

It should be noted that Method TO-15 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

Sample ID:			Matrix/Le	vel/Unit	
COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.	% RSD	ACTION
			200		
				-0	
			P. C.		
		1			
	The state of the s				

Actions:

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were met _	_X	
Criteria were not mel		
and/or see below	_	

OC LIMIT

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

LCS ID

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

0/ D

List the %R of compounds which do not meet the criteria

COMPOUND

	EGO ID	COMI COM	70 11	QC LIMIT
LCS/LCSI within_lab	D_(Blank_spike oratory_control)_analyzed_in_this_data_ţ _limits	oackage;_%_recoverie	s_and_RPD

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? Yes or <u>No</u>. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

			All criteria were metX Criteria were not met and/or see below
IX.	LABORATOR	Y/FIELD DUPLICATE PRECISION	
	Sample IDs: Sample IDs: Sample IDs:	_ 1606272-01A/02A_(field) _ 1606272-09A/10A_(field) _ LCS/LCSD_(laboratory)	Matrix:Air Matrix:Air Matrix:Air

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information. Suggested criteria: RPD \pm 25% for air samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
	RPD v	vithin the met	hod performand	e criteria	

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were met_	Х_	_
Criteria were not met		
and/or see below		

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +40% or -40% of the IS area in the associated calibration standard.
- * Retention time (RT) within \pm 0.06 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION
_Internal_st _and_calibr	andard_area_and_reation_standards	etention_times_	within_laboratory	_control_limits_for_	both_samples
Actions:					

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -40%	IS AREA > + 40%
Positive results	J	J
Nondetected results	R	ACCEPT

2. If a IS retention time varies more than 0.330 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were mel _	_X_	
Criteria were not met		
and/or see below		

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

1606272-01A

Naphthalene

RF = 2.00219

[] = (55723)(36)/(474805)(2.00219)

= 2.110 ng OK

All criteria were metX_	_
Criteria were not met	
and/or see below	

XII. QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASONS FOR DILUTION
No dilution per	formed.	
		- F2-5
5,53%		
COLUMN TO SERVICE SERV		

Percent Solids	
List samples which have ≤ 50 % solids	
Towns of the second sec	

Actions:

If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ)

If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R) $\,$